Solving Quadratics

You may write on the sheet. **Show ALL your working.** You will not need a calculator. **Section A:**

Write down the first $10 \ \mbox{square}$ numbers. One example has been done for you.

x	1	2	3	4	5	6	7	8	9	10
<i>x</i> ²				16						

You may use this table to help you with Section B.

Section B:

Rearrange and solve the following equations. There should be two solutions for each one. Show **every line** of your working.

0.110 1			
1.	$x^2 = 36$	2.	$2x^2 = 2$
3.	$3x^2 = 48$	4.	$x^2 + 24 = 49$
5.	$x^2 - 16 = 9$	6.	$x^2 + 1 = 82$
7.	$5y^2 = 45$	8.	$9y^2 = 81$
9.	$4y^2 = 100$	10.	$51 + x^2 = 100$

Solving Quadratics SOLUTIONS

You may write on the sheet. **Show ALL your working.** You will not need a calculator. **Section A:**

Write down the first 10 square numbers. One example has been done for you.

x	1	2	3	4	5	6	7	8	9	10
<i>x</i> ²	1	4	9	16	25	36	49	64	81	100

You may use this table to help you with Section B.

Section B:

Rearrange and solve the following equations. There should be two solutions for each one. Show **every line** of your working.

001			
1.	$x^2 = 36$	2.	$2x^2 = 2$
	x = 6 or x = -6		$x^{2} = 1$
			x = 1 or $x = -1$
3.	$3x^2 = 48$	4.	$x^2 + 24 = 49$
	$x^2 = 16$		<i>x</i> = 25
	x = 4 or $x = -4$		x = 5 or $x = -5$
5.	$x^2 - 16 = 9$	6.	$x^2 + 1 = 82$
	$x^2 = 25$		<i>x</i> = 81
	x = 5 or $x = -5$		x = 9 or $x = -9$
7.	$5y^2 = 45$	8.	$9y^2 = 81$
	$y^2 = 9$		$y^{2} = 9$
	y = 3 or $y = -3$		y = 3 or $y = -3$
9.	$4y^2 = 100$	10.	$51 + x^2 = 100$
	$y^2 = 25$		$x^2 = 49$
	y = 5 or $y = -5$		x = 7 or $x = -7$

More Quadratic Equations

Hint:

$$\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3} \quad or \quad -\frac{2}{3}$$

To square root a fraction, you can square root the top and square root the bottom.

Section A:

The first set of questions should be solved without a calculator, giving answers as fractions in their simplest form where necessary.

Section B:

You may use a calculator for these questions, giving your answers as decimals correct to 2 d.p. where necessary. Warning: one of these quadratics has no solution – can you see which one, and why?

1.
$$3+5=7x^2$$

3. $5x^2 - \frac{1}{2} = 15$
2. $14-5x^2 = 27$
3. $64-25x^2 = \frac{81}{16}$

More Quadratic Equations SOLUTIONS

Hint:

$$\frac{4}{9} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3} \quad or \quad -\frac{2}{3}$$

To square root a fraction, you can square root the top and square root the bottom.

Section A:

The first set of questions should be solved without a calculator, giving answers as fractions in their simplest form where necessary.

1.	2.
$2r^2 - 5 - 45$	$7x^2 \pm 58 - 758$
2λ $3 = 43$	$7x^{-1} 30 = 730^{-1}$
$2x^2 = 50$	$7x^2 = 700$
$x^2 = 25$	$x^2 = 100$
$x = \pm 5$	$x = \pm 10$
3.	4.
$8 - x^2 = 4$	$64x^2 = 36$
	36
$8 = 4 + x^2$	$x^{-} = \frac{1}{64}$
$4 = x^2$	6 3
$\pm 2 = x$	$x = \pm \frac{1}{8} = \pm \frac{1}{4}$
5.	6.
100	49
$x^2 = \frac{100}{100}$	$3x^2 = \frac{4y}{1}$
49	3
	49
10	$x^{-} = \frac{-1}{9}$
$x = \pm \frac{1}{7}$	7
/	$x = \pm \frac{1}{3}$
7.	8.
$26 \ 2x^2 - 6$	$91 x^2 - 1$
20 - 2x = -0	$01\lambda - 1$
$26 = 2x^2 - 6$	$x^2 - \frac{1}{2}$
$32 = 2x^2$	$\sim -\frac{1}{81}$
$16 = r^2$	1
$10 - \chi$	$x = \pm \frac{1}{2}$
$\pm 4 = \chi^{-}$	9

Section B:

You may use a calculator for these questions, giving your answers as decimals correct to 2 d.p. where necessary. Warning: one of these quadratics has no solution – can you see which one, and why?

1.	2.
$3 + 5 = 7x^2$	$14 - 5x^2 = 27$
$8 = 7x^2$	$14 = 27 + 5x^2$
82	$-13 = 5x^2$
$\frac{1}{7} = x^2$ $\pm 1.07 = x$	$-\frac{13}{5} = x^2 \implies No \ Solutions! \ (\sqrt{-ve})$
3.	3.
$5x^2 - \frac{1}{2} = 15$	$64 - 25x^2 = \frac{81}{16}$
$5x^2 = 15.5$ $x^2 = 3.1$	$64 = \frac{81}{16} + 25x^2$
x = +1.76	$58.9375 = 25x^2$
	$2.3575 = x^2$
	$\pm 1.54 = x$