Quadratic Powers Problem

Find all real solutions to the equation:

$$(x^2 - 7x + 11)^{x^2 - 11x + 30} = 1$$

Quadratic Powers Problem

Find all real solutions to the equation:

$$(x^2 - 7x + 11)^{x^2 - 11x + 30} = 1$$

Quadratic Powers Problem

Find all real solutions to the equation:

$$(x^2 - 7x + 11)^{x^2 - 11x + 30} = 1$$

Quadratic Powers Problem

Find all real solutions to the equation:

$$(x^2 - 7x + 11)^{x^2 - 11x + 30} = 1$$

Quadratic Powers Solution

Note that the right-hand-side is 1, and that there are a limited number of ways this can be accomplished:

1. The power is zero.

Since $a^0 = 1$ for any a, solutions can be found by solving $x^2 - 11x + 30 = 0$:

$$x^{2} - 11x + 30 = 0 \implies (x - 5)(x - 6) = 0 \implies x = 5 \text{ or } x = 6$$

2. The base is one.

Since $1^a = 1$ for any *a*, solutions can be found by solving $x^2 - 7x + 11 = 1$:

$$\Rightarrow$$
 $x^2 - 7x + 10 = 0 \Rightarrow (x - 2)(x - 5) = 0 \Rightarrow x = 2 \text{ or } x = 5$

3. The base is negative one and the power is even.

Since $(-1)^a = 1$ for even values of a, solutions to $x^2 - 7x + 11 = -1$ will be solutions provided they also satisfy $x^2 - 11x + 30 = 2n$, $n \in \mathbb{N}$ (that is, $x^2 - 11x + 30$ is even):

$$\Rightarrow$$
 $x^2 - 7x + 12 = 0$ \Rightarrow $(x - 3)(x - 4) = 0$ \Rightarrow $x = 3$ or $x = 4$

Checking: $(3)^2 - 11(3) + 30 = 6 = 2(3)$ and $(4)^2 - 11(4) + 30 = 2 = 2(1)$

Both give even values, therefore the full list of solutions is:

