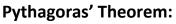
Finding Pythagorean Triples





Pythagorean triple:

A set of three integers which satisfy the theorem. A triangle with these side lengths would be right-angled.

Eg: 3, 4, 5 $a^{2} + b^{2} = c^{2}$ $3^{2} + 4^{2} = 5^{2}$

To generate a Pythagorean triple:

Using any whole number more than 1 for m, substitute into these formulae:

 $a = m^2 - 1$ b = 2m $c = m^2 + 1$ Where *m* is an integer (a whole number) greater than 1

Eg: $m = 4 \implies a = 4^2 - 1 = 15$ b = 2(4) = 8 $c = 4^2 + 1 = 17$ Pythagorean triple: **8**, **15**, **17**. *Check:* $8^2 + 15^2 = 64 + 225 = 289 = 17^2$

1. Use the formulae above to generate some of your own triples.

A **primitive** triple is one where the three numbers have no common factors (called 'coprime'). Eg, 60, 80, 100 is not primitive – it is $20 \times$ the 3, 4, 5 triple.

2. What values of m produce primitive triples?

The formulae above will generate an infinite number of primitive triples, but not all possible triples. To do this it is necessary to extend it a little:

 $a = m^2 - n^2$ b = 2mn $c = m^2 + n^2$ where *m* and *n* are both positive integers

Eg: m = 5 n = 2: $a = 5^2 - 2^2 = 21$ b = 2(5)(2) = 20 $c = 5^2 + 2^2 = 29$

3. Investigate different values for *m* and *n*. Can you identify the conditions for generating primitive Pythagorean triples?

Finding Pythagorean Triples - SOLUTIONS

Pythagoras' Theorem:

Pythagorean triple:

A set of three integers which satisfy the theorem.

A triangle with these side lengths would be right-angled.

$$Eg: 3, 4, 5$$
$$a^{2} + b^{2} = c^{2} \qquad 3^{2} + 4^{2} = 5^{2}$$

$a=m^2-1$ b=2m $c=m^2+1$ Where m is an integer (a whole number) greater than 1

1. Use the formulae above to generate some of your own triples.

m =	2	3	4	5	6	7
a, b, c =	3, 4, 5	8, 6, 10	15 ,8, 17	24, 10, 26	35, 12, 37	48, 14, 50

2. What values of m generate primitive triples?

Even values of m generate primitive triples. $m^2 + 1$ and $m^2 - 1$ would be odd, and 2m would be even. Since $m^2 - 1$ and $m^2 + 1$ are exactly 2 apart, the only way they can share factors is if the factor is 2, but if they are both odd, all three numbers must be coprime.

> $a = m^2 - n^2$ b = 2mn $c = m^2 + n^2$ where *m* and *n* are both positive integers

3. Investigate different values for m and n. Can you identify the conditions for generating primitive Pythagorean triples?

<i>n</i> ↓ m →	2	3	4	5	6	7
1	3,4,5	8,6,10	15,8,17	24,10,26	35,12,37	48,14,50
2		5,12,13	12,16,20	21,20,29	32,24,40	45,28,53
3			7,24,25	16,30,34	27,36,45	40,42,58
4				9,40,41	20,48,52	33,56,65
5					11,60,61	24,70,74
6						13,84,85
7						

Primitives occur when both: exactly one of *m* and *n* are even and when they are coprime