
Introduction to Polar Coordinates in Mechanics (for AQA Mechanics 5) 
 
Until now, we have dealt with displacement, velocity and acceleration in Cartesian coordinates 
- that is, in relation to fixed perpendicular directions defined by the unit vectors   and  .  
Consider this exam question to be reminded how well this system works for circular motion: 
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Note that the position vector is given in  ,   form, with each component in terms of the time  .   
 
To prove that the particle is performing circular motion about the origin, it is sufficient to show 
that the distance from the origin is constant.  Since   is the displacement vector, the distance is 
given by    : 
 

                                            
 

                                                                       
 
By considering how the   and   components vary as    varies between   and   , we can get an 

impression not just of position, but also of velocity.  Eg, while      
 

 
 the particle is in the 

fourth quadrant – in the   direction the position is positive but decreasing slowly, and in the   
direction the position is negative and decreasing rapidly.  In other words, the particle is 
travelling clockwise around a circle of radius   about the origin, starting from the point      .    
 

 
Recall that the velocity can be found from displacement using the result   

  

  
, and when   

and   are vectors, this means differentiating the   and   components separately, with respect to 
time (these components are perpendicular, so do not directly affect one another).   
 

  
  

  
                    

 
 



By considering the components of velocity at various points, just as we did for displacement, 

we can get an idea of the velocity of the particle.  For instance, when 
 

 
     , the particle is 

moving left (quickly at first, but with decreasing speed) and up (slowly at first, but with 
increasing speed).  Note also that, using the same method as in part a), we could use 
Pythagoras to show that the magnitude of velocity (the speed) is constant.  Therefore while 
direction is constantly changing, the particle is travelling at a constant speed.  Since the 
acceleration of the particle is affecting both components of velocity, it is harder to see how this 
is changing directly from this expression, but it will become clearer once we find the 
acceleration vector.  Note, however, that as the   component of velocity increases, the   
component decreases and vice versa.  We should find that the acceleration of the particle is of 
constant magnitude even though its direction is constantly changing.   
 

 
Recall that the acceleration vector can be found from velocity using the result   

  

  
.   

 

  
  

  
                    

 
Note firstly that it would be easy to show, as in part a), that acceleration is constant in 
magnitude (if not direction).  Also note the similarity of this expression to that of displacement.  
The only difference is the signs (negative   and positive   in this case) and the magnitude.  So 
the acceleration is clearly directly related to the displacement of the particle.  This is a key 
feature of circular motion.   
 

 
 
This is a straightforward result to prove, but it is crucial to the idea of circular motion.   
 

                                             
 
Since the acceleration vector is a scalar multiple of the displacement vector, the two vectors 
are parallel.  This means acceleration always acts along the same line as the displacement of 
the particle from the origin (that is, along the radius of the circular motion).   
 
 
 



 
                                              

 
Note the negative sign – this tells us that the acceleration acts in the opposite direction to 
displacement.  Displacement measures the position of the particle relative to the origin, and so 
it always points from the origin to the particle.  Therefore acceleration points from the particle 
to the origin.  This fits in with the whole concept of centripetal force and centripetal 
acceleration.  Since the velocity is constantly changing direction, the acceleration vector must 
be constantly changing direction, and since acceleration is always pointing radially (towards the 
centre), it cannot affect the magnitude of velocity which always points tangentially (at right 
angles to the radial direction).   
 

Why Polar Coordinates? 
 
The motion described in the question above required the use of the trigonometric functions 
     and       .  It was possible to describe motion in the Cartesian coordinate system, but 
was somewhat clumsy.  Since the directions we are really interested in with this sort of motion 
constantly change, it makes sense to have the unit vectors we relate to changing in the same 
way.  Using a different coordinate system like this often simplifies what would otherwise be 
intractable problems.  Circular motion itself is not too bad, but other forms of curvilinear 
motion (such as motion in a spiral) can get rather complicated.  In addition, phenomena such as 
centrifugal force (the apparent force experienced by an object moving in a curve) can be more 
easily grasped.  While this force may not appear to exist ‘in reality’, from the point of view of an 
observer within a spinning frame of reference, it very much does… 

 
 

  



Constructing the Polar Coordinate System 
 
A note on notation 
 
To stop an already complicated system of formulae looking completely ludicrous, we will use 

the accepted notation 
  

  
    and 

   

   
   .  These are the derivative and second derivative of   

(which is a function of  ) with respect to  .   
For instance, if         then           and          .   
 
Implications of implicit differentiation 
 
Recall that if we need to differentiate an expression in terms of one variable with respect to 

another, the chain rule allows us to write: 
  

  
 

  

  

  

  
.   

Combining this idea with the notation above, we can say things like: 
     

  
     .   

Note that, like any letters used here which aren’t vectors,   is a function of time.   
When a letter represents a vector, it will be written in bold.   
 
The Cartesian system 
 
We begin by considering what we already know – the Cartesian system: 
 
The general form of displacement would be given as:            
where   and   are functions of time, and   and   are fixed perpendicular unit vectors in the 
plane.   
 
The velocity vector can found from displacement:                 
Since velocity is the rate of change of displacement, it can be described precisely, in vector 
form, by considering the rate of change separately in each of the two fixed perpendicular 
directions.   
 
Similarly, the acceleration vector can be found:                    
 
Note the use of    and    for the velocity and acceleration vectors.  The results above are the 
definitions of these vectors, and their derivatives cannot be found directly, but depend on 
these definitions.  This will become important – and less intuitive – when we define equivalent 
expressions for displacement ( ), velocity (  ) and acceleration (  ) in polar coordinates.   

 
  



The concept of Polar Coordinates 
 
Essentially, polar coordinates boil down to a different way of defining position in the plane.  
Consider the point       in Cartesian coordinates.  It can be thought of as   unit along (to the 
right) and   unit up.   
 
However, it could also be identified by its distance from the 

origin      and the anticlockwise angle its position vector 

makes with the positive   axis  
 

 
 : 

 
Instead of      , we have      , where   is the magnitude of 
the position vector (the distance from the origin) and   is the 
angle.  Our point       in Cartesian coordinates becomes 

    
 

 
  in polar form.   

 
 
It may seem like a lot of effort to go to just for a different way of describing something we 
already have a system for, but certain functions naturally lend themselves to being described in 
this way.  The unit circle, for instance:  Cartesian form:        ; Polar form:    .   
 
Making the link 
 
By considering the vector triangle opposite, 
note that the   coordinate is equivalent to 
      and the   coordinate to      .  This 
allows us to make a link between the system 
we are already familiar with (Cartesian) and 
the one we are trying to develop.   

 
 
  



 
Transverse and Radial components 
 
While the magnitude and angle system is important to understand, in order to describe motion 
in polar form it is necessary to define perpendicular unit vectors.  The vector    is a unit vector in 

the radial (from the centre) direction, and    is the unit vector in the transverse direction (at 
right angles to   ).   
 
The radial unit vector    always points one unit in the same direction as the position vector of 
the point in question (in the direction of increasing radius  ).   
 

The transverse unit vector    points one unit at right angles to this vector (in the direction of 
increasing angle  ).   
 
Note: The    (‘r-hat’) notation indicates a unit vector.  I am not using it for   and   simply 
because there is nothing to confuse them with, whereas by the time we’re finished there will 
be  ,   ,   ,  ,    and    to keep track of in addition to the unit vector   .   
 
By considering an arbitrary point in the plane, we can finally start to identify the relationships 

between   ,    and   and  .   

  
The vector pointing directly away from the origin is the unit vector   , and the unit vector at 

right angles to the radial direction is the transverse unit vector   .   
 
Note that the marked angles in the right hand diagram are both  , and since the unit vectors 
have length  , the component vectors in the   and   directions are: 
 

                                                 
 



Displacement in terms of transverse and radial unit vectors 
 
This is the most intuitive of the results that follow, and is easily derived from the Cartesian 
definitions: 

      
 
This can be derived directly from the definition of displacement in the Cartesian coordinates 
system, and the link between   and   in that system with   and  : 
 

                                         
 
Since the displacement is simply the position of the point in the plane, we can locate it by 
simply going the right distance in the right direction.  The variable   (a function of time) tells us 
how far away the particle is from the origin at any given moment, and the radial unit vector is 
already defined in terms of the direction of the particle from the origin, so we can simply 
multiply the required distance by the unit vector we already have which points in the required 
direction.  Note that there is no transverse component to this at all – this is not an accident; the 
unit vector    was defined specifically to always point in the direction of displacement, so the 
transverse unit vector is not needed.   
 
Velocity in terms of transverse and radial unit vectors 
 
This is somewhat less clear than the previous result, but through the careful application of 
some basic differentiation techniques, and using the notation explained earlier, we get: 
 

                
 
Starting with the Cartesian form, and using product rule and chain rule (implicit differentiation), 
we can derive an expression for  , or    as it is more often referred to.   
 

                                                    

 

                                                   

 

                                                 

 

                                              
 
Note that   and   are simply functions of time, hence the need to use chain rule when 
differentiating with respect to time.   
 



We designed our coordinate system with displacement in mind, which is why the displacement 
vector is so straightforward (there is never any transverse component).  However, this means 
that the form we arrive at for velocity takes a little explaining.  Fortunately, when broken down, 
it is not a huge step from the idea of velocity in circular motion.   
Note first of all that the radial component of velocity is simply    – the rate of change of the 
radial distance.  If the particle is moving directly away from the centre (and not changing its 
angle at all), this is the only component of velocity it would have.   

Secondly, in order to understand the transverse component we should consider what    
represents – it is the rate of change of the angle,  , with respect to time.  In other words, the 
angular velocity of the particle, which is often written as  .   
 
When measuring the overall velocity of a 
particle, we need to take into account its 
velocity in both directions (radial and 
tangential/transverse).  The radial velocity is 
the rate at which the radius is changing,   , and 
the transverse speed must be the rate at 
which it is moving at right angles to the radius.  
Just as tangential speed in circular motion is 
given by     , so our tangential speed is 

also   , or, using our notation,    .   
 
When the two components of velocity are 
combined, and written along with the radial 
and transverse unit vectors, we get: 

                

Angular Velocity side note: 
Since the angular velocity measures radians 
turned through per second, it takes no 
account of the size of the circle.  So the 
angular velocity of the Earth around the sun is 
microscopic because it takes a whole year just 
to complete a single turn (   radians in 31.5 
million seconds, or               ), while 
the angular velocity of a PowerBall gyroscope 
might easily be 10,000 rpm (         
radians in    seconds, or             ).  
Since a turn of one radian represents an arc 
length of exactly one radius-length, 
multiplying the angular velocity by the radius 
gives the actual speed (in     ).   

 
Acceleration in terms of transverse and radial unit vectors 
 
You might be tempted to differentiate the radial and transverse components directly, using the 
expression above for velocity, but this is not in line with our accepted definition of acceleration.  
Since the unit vectors we are measuring with respect to are changing as time goes by, we need 
to take that into account.  So, again, our result comes from examining the Cartesian form: 
 

                               

 
The trick with these proofs is to work out the   component and   component separately, then 
combine and take out combinations of      and        which correspond to the definitions of 

our new unit vectors    and   .   
  



 

                  
 

                                                          

 

                               

 
 

                  
 

                                                       

 

                               

 

                                                              

 

                             

 
The acceleration expression is the most complicated-looking of the three, but looking at the 
individual components in turn will enable us to identify the key components and how they fit 
in.   
Firstly, the radial component is the combined effect of the motion along the radial line and 

centripetal acceleration.  Note that          which should be familiar from circular motion 
(also note that the term is negative since the centripetal force must act towards the origin).   

Secondly, the transverse component is a combination of     and      .  Taking the     term first, 

we should recognize that    is the rate of change of angular velocity (since     ), so it makes 
sense that it should form part of the transverse acceleration – if the velocity in the transverse 
direction is changing, the acceleration in that direction will depend on the rate of change of the 
transverse velocity.  This effect is magnified if the particle is further from the origin – that is, 
when   is large.  So by multiplying by   we get a term which provides part of the total 

transverse acceleration.  Next, to understand the       term, we need to recognize that it comes 
about as a consequence of a change in transverse velocity.  The previous term is simply the 
acceleration required at a given distance from the origin to change angular speed, but this term 
comes into effect when the radius (the distance from the origin) is also changing.  It is directly 

related to the angular velocity, hence the    term, but since it depends on the rate at which the 
radius changes, it must also contain   .   
 
 
 
 
 



Some useful case studies 
 

Motion Velocity Acceleration 

In general:                                            

Motion at a 
constant 
speed in a 
straight line 
from the 
origin.   

     

Since   is constant,      .   
   will be constant. 

  
No radial acceleration since    is constant, so 

    , and     .   

No transverse acceleration since        .   

Motion at a 
constant 
speed in a 
circle.   

      
     since   is constant – 
there is no radial velocity.   

Transverse velocity is     or 
  .   
Since the speed around the 

circle is constant,    is 
constant.   

        
        since   is constant.  And since    is 

constant,     .  There is no transverse 
acceleration, and the only component of radial 
acceleration is what is known as centripetal 
acceleration;     acting towards the centre of 
the circle.   

Varied 
motion along 
a fixed radial 
line.   

     

Since   is constant,     , so 
there is no transverse 
component of velocity.   

     

        so there is no centripetal 
component of radial acceleration, and no 
transverse acceleration.   

Motion 
around a 
fixed circle 
with variable 
angular 
velocity.   

      
     since   is constant, so 
there is no radial component 
of velocity.  The transverse 
component of velocity varies 

as    (or  ) varies, but is 
proportional to the fixed 
radius  .   

              
        since   is constant.   
The only radial component is the centripetal 
force component causing the circular motion, 
and the transverse component – since the 
radius is constant – is just the rate of change of 
the angular velocity for this fixed radius.   

Variable 
motion along 
a radial line 
rotating at a 
constant rate.   

           

   is constant.   
                    

     since    is constant.  The radial 
component is still composed of two parts, since 
the object is moving back and forth along the 
line and since centripetal acceleration is 
required for the transverse velocity to be 
constantly changing direction (curved motion).  

Since     , the only transverse component is 
that which depends on both angular velocity 
and the rate of change of the radius.   

 



 
Final notes 
 
Angular momentum is an analogous concept to linear momentum.  In linear momentum, the 
mass and the velocity are the key components, but with angular momentum, an additional 
component of the radius is involved.  Like linear momentum, angular momentum is conserved, 
which is why an ice-skater spins faster when they pull their legs and arms in to reduce the 
radius.   
 

If we multiply the radius by the angular velocity we get     .  Unless a transverse force is 
applied to change angular momentum, this will be constant.  Since transverse force is directly 

linked to transverse acceleration, the result       , where   is a constant, is equivalent to 
saying that the transverse component of acceleration is  .   
 
Proof: 

 

  
                                

 

                                       
 

  
         

 

     
 

 

 

  
                 

 
Example question 
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The only resultant force acting on the particle is tension in the string (although it is moving 
transversely, it has no transverse component of acceleration since there is no force acting at 
right angles to the string).  Since the only force is radial, the transverse component of 
acceleration must be zero.   
 

 
 

     is the angular momentum term, which must be constant since there is no transverse 
component of acceleration.   

            

 

At the start of motion,      and       (since    is angular velocity, so     is the transverse 

component of velocity).  Therefore, since      is constant throughout the motion, the value at 
the start must be the same throughout, and is equal to: 
 

                

 

 
 

This comes back to the angular momentum,     , which has been found to be equal to     
throughout the motion.  At the maximum value of  , since the angular momentum is constant: 
 

                  
  

 
 

 

 
 
We have the initial speed, and enough information about the elastic string to find the total 
energy of the system, which will be a combination of kinetic and elastic potential: 
 

               
 

 
    

   

  
 

 

 
    

        

  
 

 

 
         

  



 
 
At the point when   is maximal: 
 

             
 

 
  

  

 
 
 

 
        

  
 

 

  
         

 
Since energy is conserved: 

 

 
         

 

  
         

 

    
    

  
      

 

        
     

 
 

 

 

Using Hooke’s law, at maximum stretch the tension will be   
  

 
 

       

 
     

 
Since this is the resultant force acting on the particle, we can use      to find the radial 
component of acceleration (and, as we have already established, there is no transverse 

component).     
 

 
   .  Note that this is pulling towards the centre, making the direction of 

acceleration negative in relation to the radial unit vector.   
 
Additional note: 
Since, as we have already established, the transverse component of acceleration is zero, the 
direction must be purely radial.   
 
Radial acceleration is given by: 

        
 

But since, at maximum  ,     ,     , so this is simply      .  Since, using force and 
acceleration, we have already found this value, we could use our result to work backwards and 
find the angular velocity at this point: 
 

                                        


