Oil Drum Optimisation

Manufacturers of oil drums would like to minimise the cost of production by determining the optimal dimensions for a cylindrical drum.

The curved surface is made of 16-gauge steel which costs £14 per square metre.

The circular ends are made slightly differently, and costs £20 per square metre.

Given that the drum must have a volume of 200 litres (that is, $0.2m^3$), find the optimal radius for the drum and the overall cost of materials.

Oil Drum Optimisation Solutions

Manufacturers of oil drums would like to minimise the cost of production by determining the optimal dimensions for a cylindrical drum.

The curved surface is made of 16-gauge steel which costs £14 per square metre.

The circular ends are made slightly differently, and costs £20 per square metre.

Given that the drum must have a volume of 200 litres (that is, $0.2m^3$), find the optimal radius for the drum and the overall cost of materials.

For a radius of x and a height of h: $V = 2x^2h = 0.2 \implies h = 0.1x^{-2}$

The curved surface has area: $2\pi xh = 2\pi x(0.1x^{-2}) = 0.2\pi x^{-1}$

The circular ends have area: $2\pi x^2$

The total cost is: $C = 14(0.2\pi x^{-1}) + 20(2\pi x^2) = 2.8\pi x^{-1} + 40\pi x^2$

Minimum cost at: $\frac{dC}{dx} = 0 \implies -2.8\pi x^{-2} + 80\pi x = 0 \implies -2.8 + 80x^3 = 0$

$$\Rightarrow x^3 = \frac{2.8}{80} \Rightarrow x = 0.327m \text{ to } 3 \text{ s.} f.$$

Cost for this radius: $C = \frac{2.8\pi}{0.327} + 40\pi 0.327^2 = \text{\pounds}40.34$