

1. Complete the table below:

n^{th} term	First 6 terms	1000 th term	Term-to-Term Rule
T(n)=2n		T(1000) =	
T(n) = n + 10		T(1000) =	
T(n) = -10n		T(1000) =	
T(n) = 3n + 1		T(1000) =	
$T(n) = n^2$		T(1000) =	

2. The first four sequences are called 'linear sequences'. What do they all have in common?

- 3. How does the term-to-term rule relate to the n^{th} term rule for linear sequences?
- 4. What would you expect the term-to-term rule to be for T(n) = 6n + 13? *Term-to-Term Rule:*
- 5. Give an example of the n^{th} term rule for a sequence that goes up by 5 every time. T(n) =
- 6. Give an example of the n^{th} term rule for a *different* sequence that goes up by 5 every time. T(n) =

<i>n</i> ^{<i>m</i>} term rules	n th	term	rules
---	-----------------	------	-------

n th term	First 6 terms	1000 th term	Term-to-Term Rule
T(n)=2n		T(1000) =	
T(n) = n + 10		T(1000) =	
T(n) = -10n		T(1000) =	
T(n) = 3n + 1		T(1000) =	
$T(n) = n^2$		T(1000) =	

1. Complete the table below:

2. The first four sequences are called 'linear sequences'. What do they all have in common?

3. How does the term-to-term rule relate to the n^{th} term rule for linear sequences?

- 4. What would you expect the term-to-term rule to be for T(n) = 6n + 13? *Term-to-Term Rule:*
- 5. Give an example of the n^{th} term rule for a sequence that goes up by 5 every time. T(n) =

6. Give an example of the n^{th} term rule for a *different* sequence that goes up by 5 every time. T(n) =

*n*th term rules **SOLUTIONS**

1. Complete the table below:

n^{th} term	First 6 terms	1000 th term	Term-to-Term Rule
T(n)=2n	2, 4, 6, 8, 10, 12	T(1000) = 2000	+2
T(n) = n + 10	11, 12, 13, 14, 15, 16	T(1000) = 1010	+1
T(n) = -10n	-10, -20, -30, -40, -50, -60	T(1000) = 10000	-10
T(n) = 3n + 1	4, 10, 13, 16, 19, 22	T(1000) = 3001	+3
$T(n) = n^2$	1, 4, 9, 16, 25, 36	T(1000) = 1000000	(+ the n^{th} odd number to get to the n^{th} term)

2. The first four sequences are called 'linear sequences'. What do they all have in common? The term-to-term rule is always + or - a number.

3. How does the term-to-term rule relate to the n^{th} term rule for linear sequences? The number in front of n in the n^{th} term rule is the same as the number added for the term-to-term rule.

4. What would you expect the term-to-term rule to be for T(n) = 6n + 13? *Term-to-Term Rule:* +6

5. Give an example of the n^{th} term rule for a sequence that goes up by 5 every time. T(n) = 5n + anything

6. Give an example of the n^{th} term rule for a *different* sequence that goes up by 5 every time. $T(n) = 5n + anthing \ else$