
Integration by parts 

Integration by parts is a direct reversal of the product rule.   
By integrating both sides, we get: 

∫ 𝑢
𝑑𝑣

𝑑𝑥
 𝑑𝑥 = 𝑢𝑣 − ∫ 𝑣

𝑑𝑢

𝑑𝑥
 𝑑𝑥 

 

When to use integration by parts 

∫ 𝑥𝑛 sin 𝑚𝑥  𝑑𝑥 

(make 𝑢 = 𝑥𝑛) 

∫ 𝑥𝑛𝑒𝑚𝑥 𝑑𝑥 

(make 𝑢 = 𝑥𝑛) 
 

∫ 𝑥𝑛 cos 𝑚𝑥  𝑑𝑥 

(make 𝑢 = 𝑥𝑛) 

∫ 𝑥𝑛 ln 𝑚𝑥  𝑑𝑥 

(make 𝑢 = ln 𝑚𝑥) 
 

Although most of the time the simplest part (usually 𝑥𝑛) becomes 𝑢 and the other part 

becomes 
𝑑𝑣

𝑑𝑥
, if ln 𝑚𝑥 is involved, this should be made 𝑢, since its integral is not easily found.     

 

When not to use integration by parts 
Method 1 (rearranging first): 

∫ 𝑥2(3 − 2𝑥)  𝑑𝑥 = ∫ 3𝑥2 − 2𝑥3  𝑑𝑥 = 𝒙𝟑 −
𝒙𝟒

𝟐
+ 𝑪 

Method 2 (using parts): 

∫ 𝑥2(3 − 2𝑥)  𝑑𝑥   ⟹     𝑢 = 3 − 2𝑥        
𝑑𝑣

𝑑𝑥
= 𝑥2           

𝑑𝑢

𝑑𝑥
= −2          𝑣 =

𝑥3

3
 

 

∫ 𝑥2(3 − 2𝑥)  𝑑𝑥 = (3 − 2𝑥)
𝑥3

3
− ∫ −

2𝑥3

3
 𝑑𝑥 

 

= 𝑥3 −
2𝑥4

3
+ ∫

2𝑥3

3
 𝑑𝑥 = 𝑥3 −

2𝑥4

3
+

𝑥4

6
= 𝒙𝟑 −

𝒙𝟒

𝟐
+ 𝑪 

 

In general, if it is possible to simplify, this will be more efficient than using parts.   
 

When to use integration by parts twice 
 

For ∫ 𝑥𝑛 sin 𝑚𝑥  𝑑𝑥 or ∫ 𝑥𝑛 cos 𝑚𝑥  𝑑𝑥, if the power of 𝑥 is more than 1 you will 
find that the simpler integral generated by integration by parts it still too 
complicated to evaluate directly.   
 
In this case, use integration by parts again to deal with this integral.  An integral 
involving, for instance, 𝑥2𝑒𝑥 will simplify to one involving 𝑥𝑒𝑥, which itself will 
simplify to one involving 𝑒𝑥, which can then be evaluated directly.   



When integration by parts twice takes you back to square one 
 

For ∫ 𝑒𝑥 sin 𝑥  𝑑𝑥 and similar examples, integration by parts will yield a similar 
integral (such as ∫ 𝑒𝑥 cos 𝑥  𝑑𝑥), but integration by parts a second time will yield 
the same type again (one in the form ∫ 𝑒𝑥 sin 𝑥  𝑑𝑥).  This may seem to be 
useless, taking you in circles, but by treating the original integral as the variable 
you want to solve for and rearranging, you can find its value.   
 

Eg: 

∫ 𝑒𝑥 sin 𝑥  𝑑𝑥 

 

𝑢 = 𝑒𝑥        
𝑑𝑣

𝑑𝑥
= sin 𝑥        

𝑑𝑢

𝑑𝑥
= 𝑒𝑥         𝑣 = − cos 𝑥 

 

∫ 𝑒𝑥 sin 𝑥  𝑑𝑥 = −𝑒𝑥 cos 𝑥 + ∫ 𝑒𝑥 cos 𝑥  𝑑𝑥     (𝟏) 
 

…… 
 

Integrating the remaining integral by parts: 

∫ 𝑒𝑥 cos 𝑥  𝑑𝑥 

 

𝑢 = 𝑒𝑥        
𝑑𝑣

𝑑𝑥
= cos 𝑥        

𝑑𝑢

𝑑𝑥
= 𝑒𝑥         𝑣 = sin 𝑥 

 

∫ 𝑒𝑥 cos 𝑥  𝑑𝑥 = 𝑒𝑥 sin 𝑥 − ∫ 𝑒𝑥 sin 𝑥  𝑑𝑥     (𝟐) 

 

…… 
 

Substituting (𝟐) into (𝟏): 
 

∫ 𝑒𝑥 sin 𝑥  𝑑𝑥 = −𝑒𝑥 cos 𝑥 + (𝑒𝑥 sin 𝑥 − ∫ 𝑒𝑥 sin 𝑥  𝑑𝑥) 

 

∫ 𝑒𝑥 sin 𝑥  𝑑𝑥 = −𝑒𝑥 cos 𝑥 + 𝑒𝑥 sin 𝑥 − ∫ 𝑒𝑥 sin 𝑥  𝑑𝑥 

 

2 ∫ 𝑒𝑥 sin 𝑥  𝑑𝑥 = −𝑒𝑥 cos 𝑥 + 𝑒𝑥 sin 𝑥 

 

∫ 𝒆𝒙 𝐬𝐢𝐧 𝒙  𝒅𝒙 =
𝒆𝒙

𝟐
(𝐬𝐢𝐧 𝒙 − 𝐜𝐨𝐬 𝒙) 

 
Watch out for: any integrals involving ln 𝑥.  Even the integral ∫ ln 𝑥  𝑑𝑥 itself can 

only be readily evaluated by using parts, and setting 𝑢 = ln 𝑥 and 
𝑑𝑣

𝑑𝑥
= 1.   



Integration by substitution 
Substitution is a change of variable, using a transformation of 𝑥 to a new variable 
𝑢 in order to change the integration to one more easily evaluated.   
The transformation may then be reversed to give a solution in terms of 𝑥.   
 

When you must use integration by substitution 
 

For AQA Core 3 exams, any question that requires you to use substitution will 
provide you with a suitable function to substitute.   
 

Depending on the problem, there are a number of slightly different approaches, 
but they are all a variation on completing the following: 
 

1. Find a link between 𝑑𝑢 and 𝑑𝑥.   
(usually done by differentiating your expression for 𝑢 with respect to 𝑥) 
 

2. Replace 𝑑𝑥 with 𝑑𝑢.   
(usually this includes replacing functions of 𝑥 or 𝑢 as well) 
 

3. Replace all functions of 𝑥 with corresponding functions of 𝑢.   
(usually by directly comparing the integral with your expression for 𝑢) 
 

4. Integrate the function of 𝑢 with respect to 𝑢, then sub 𝑥 back in.   
(usually necessary, unless definite integration and limits are also transformed) 
 

The basic form: 

𝑈𝑠𝑒 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑢 = 2𝑥 + 3 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒: ∫ 𝑥√2𝑥 + 3 𝑑𝑥 

1. 

𝑢 = 2𝑥 + 3 ⟹  
𝑑𝑢

𝑑𝑥
= 2 ⟹  

1

2
 𝑑𝑢 = 𝑑𝑥 

2. 

∫ 𝑥√2𝑥 + 3 𝑑𝑥 =
1

2
∫ 𝑥√2𝑥 + 3 𝑑𝑢 

3. 
1

2
∫ 𝑥√2𝑥 + 3 𝑑𝑢 =

1

2
∫

𝑢 − 3

2
√𝑢 𝑑𝑢 =

1

4
∫ 𝑢

3
2 − 3𝑢

1
2  𝑑𝑢 

Note that 𝑥 =
𝑢−3

2
 is derived directly from 𝑢 = 2𝑥 + 3.   

4. 

1

4
∫ 𝑢

3
2 − 3𝑢

1
2  𝑑𝑢 =

𝑢
5
2

10
−

𝑢
3
2

2
+ 𝐶 =

(𝟐𝒙 + 𝟑)
𝟓
𝟐

𝟏𝟎
−

(𝟐𝒙 + 𝟑)
𝟑
𝟐

𝟐
+ 𝑪 

  



The ‘derivative is a factor’ form: 

𝑈𝑠𝑒 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑢 = 𝑥3 − 1 𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒: ∫ 5𝑥2(𝑥3 − 1)4 𝑑𝑥 

1. 

𝑢 = 𝑥3 − 1 ⟹  
𝑑𝑢

𝑑𝑥
= 3𝑥2  ⟹  

1

3
 𝑑𝑢 = 𝑥2 𝑑𝑥 

2. 

∫ 5𝑥2(𝑥3 − 1)4 𝑑𝑥 =
1

3
∫ 5(𝑥3 − 1)4 𝑑𝑢 

3. 
1

3
∫ 5(𝑥3 − 1)4 𝑑𝑢 =

1

3
∫ 5(𝑢)4 𝑑𝑢 =

5

3
∫ 𝑢4 𝑑𝑢 

 
4. 

5

3
∫ 𝑢4 𝑑𝑢 =

5

3
[
𝑢5

5
] + 𝐶 =

𝑢5

3
+ 𝐶 =

(𝒙𝟑 − 𝟏)𝟓

𝟑
+ 𝑪 

 
The ‘𝒙 as a function of 𝒖’ form: 

𝑈𝑠𝑒 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑥 = cos 𝑢  𝑡𝑜 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒: ∫
1

√1 − 𝑥2
 𝑑𝑥 

1. 

𝑥 = cos 𝑢  ⟹  
𝑑𝑥

𝑑𝑢
= − sin 𝑢  ⟹   𝑑𝑥 = − sin 𝑢  𝑑𝑢 

2. 

∫
1

√1 − 𝑥2
 𝑑𝑥 = − ∫

sin 𝑢

√1 − 𝑥2
 𝑑𝑢 

3. 

− ∫
sin 𝑢

√1 − 𝑥2
 𝑑𝑢 = − ∫

sin 𝑢

√1 − (cos 𝑢)2
 𝑑𝑢 = − ∫

sin 𝑢

sin 𝑢
 𝑑𝑢 = − ∫ 1 𝑑𝑢 

Note that √1 − cos2 𝑢 = sin 𝑢 since sin2 𝜃 + cos2 𝜃 = 1.   
4. 

− ∫ 1 𝑑𝑢 = −𝑢 + 𝐶 = − 𝐜𝐨𝐬−𝟏 𝒙 + 𝑪 

Note that, as in this case, it may be not till the end that 𝑢 in terms of 𝑥 is needed.   
 
Watch out for: changing limits in a definite integration problem.  It is not usually 
necessary to convert your integral back into a function of 𝑥 at the end, but if you 
don’t, make sure you change the limits of the integral to limits for 𝑢: 

Eg: If using 𝑢 = tan 𝑥, ∫ 𝑓(𝑥) 𝑑𝑥
2

0
 becomes ∫ 𝑔(𝑢) 𝑑𝑢

tan 2

tan 0
 

  



Integration by inspection 
Inspection relies on knowledge of the type of function that could be 
differentiated to get the one we want to integrate.  It can be thought of as a 
special case of substitution, where the substitution is generally for a linear 
function of 𝑥 (that is, 𝑢 = 𝑎𝑥 + 𝑏).   
 

When you can use integration by inspection 
 

The most common types are functions involving a linear function of 𝑥.  You need 
to be able to recognise the type of function and use the following results: 
 

 

∫(𝑎𝑥 + 𝑏)𝑛 𝑑𝑥 =
(𝑎𝑥 + 𝑏)𝑛+1

𝑎(𝑛 + 1)
+ 𝐶;  𝑛 ≠ −1 

 

 

∫ 𝑒𝑎𝑥+𝑏 𝑑𝑥 =
𝑒𝑎𝑥+𝑏

𝑎
+ 𝐶 

 

  

Eg: 

∫ √5 − 3𝑥 𝑑𝑥 = −
𝟐

𝟗
(𝟓 − 𝟑𝒙)

𝟑
𝟐 + 𝑪 ∫ 𝑒2𝑥+1 𝑑𝑥 =

𝒆𝟐𝒙+𝟏

𝟐
+ 𝑪 

 

The implied substitution here is 𝑢 = 𝑎𝑥 + 𝑏, and they both yield ‘nice’ results 

because 
𝑑𝑢

𝑑𝑥
= 𝑎 ⟹  

1

𝑎
 𝑑𝑢 = 𝑑𝑥.  This is essentially the reverse of chain rule.   

 

Another example of a commonly required inspection result is: 
 

 

∫
𝑓′(𝑥)

𝑓(𝑥)
 𝑑𝑥 = ln|𝑓(𝑥)| + 𝐶 

 

 

Eg: 

∫
2𝑥 − 1

3𝑥2 − 3𝑥 + 5
 𝑑𝑥 =

1

3
∫

6𝑥 − 3

3𝑥2 − 3𝑥 + 5
 𝑑𝑥 =

𝟏

𝟑
𝐥𝐧|𝟑𝒙𝟐 − 𝟑𝒙 + 𝟓| + 𝑪 

  

The implied substitution here is 𝑢 = 𝑓(𝑥), giving: 
𝑑𝑢

𝑑𝑥
= 𝑓′(𝑥) ⟹ 𝑑𝑢 = 𝑓′(𝑥) 𝑑𝑥: 

∫
𝑓′(𝑥)

𝑓(𝑥)
 𝑑𝑥 = ∫

1

𝑢
 𝑑𝑢 = ln|𝑢| + 𝐶 = ln|𝑓(𝑥)| + 𝐶 

 
Watch out for: these two similar-looking but different applications of inspection: 
 

∫
1

𝑎𝑥 + 𝑏
 𝑑𝑥 =

1

𝑎
∫

𝑎

𝑎𝑥 + 𝑏
 𝑑𝑥 

 

=
𝟏

𝒂
𝐥𝐧|𝒂𝒙 + 𝒃| + 𝑪 

∫
1

(𝑎𝑥 + 𝑏)2
 𝑑𝑥 = ∫(𝑎𝑥 + 𝑏)−2 𝑑𝑥 

 

=
(𝑎𝑥 + 𝑏)−1

−𝑎
+ 𝐶 =

𝟏

𝒂(𝒂𝒙 + 𝒃)
+ 𝑪 

 



Integration using partial fractions 
Partial fractions is a method for writing a complicated fraction as the sum of 

simpler ones.  For instance, 
2

𝑥(𝑥+2)
 can be written equivalently as 

1

𝑥
−

1

𝑥+2
.   

 

When you should use partial fractions 
 
For AQA Core 4 exams, particularly for the more tricky cases, the format for 
partial fractions will be given when you are required to use them.   
 
However, for simple cases you should be confident applying the following: 

𝑝𝑥+𝑞

(𝑎𝑥+𝑏)(𝑐𝑥+𝑑)
 can be written in the form 

𝐴

𝑎𝑥+𝑏
+

𝐵

𝑐𝑥+𝑑
 

Note that this assumes the denominators are not scalar multiples of one another.   

 
Once a fraction has been split into simpler ones using partial fractions, you can 

use the inspection results ∫(𝑎𝑥 + 𝑏)𝑛 𝑑𝑥 =
(𝑎𝑥+𝑏)𝑛+1

𝑎(𝑛+1)
+ 𝐶;  𝑛 ≠ 1 and ∫

𝑓′(𝑥)

𝑓(𝑥)
 𝑑𝑥.   

 
When you need to spot partial fractions: 
 
Usually when you have a quadratic denominator that factorises, but the 
numerator cannot be scaled up or down to give the differential of the 

denominator (if it can, use ∫
𝑓′(𝑥)

𝑓(𝑥)
 𝑑𝑥 = ln|𝑓(𝑥)| + 𝐶 instead).  Split the fraction 

into two, where the denominators are the factors of your original denominator.   
 
Eg: 

3𝑥 + 1

(2𝑥 − 1)(𝑥 + 1)
≡

𝐴

2𝑥 − 1
+

𝐵

𝑥 + 1
 ⟹  …   ≡

𝟓

𝟑(𝟐𝒙 − 𝟏)
+

𝟐

𝟑(𝒙 + 𝟏)
 

 
Note that the details of a partial fractions method are not given here, since we are focusing 
on how it is applied to integration problems.  For more examples of splitting a fraction in this 
way, see your notes or text book.   
 
Now the integral becomes: 

∫
5

3(2𝑥 − 1)
+

2

3(𝑥 + 1)
 𝑑𝑥 =

5

6
∫

2

2𝑥 − 1
 𝑑𝑥 +

2

3
∫

1

𝑥 + 1
 𝑑𝑥 =

𝟓

𝟔
𝐥𝐧(𝟐𝒙 − 𝟏) +

𝟐

𝟑
𝐥𝐧(𝒙 + 𝟏) + 𝑪 

 
  



When you are given the partial fractions form to use: 
 
When the denominator has repeated factors, or the fraction is improper, the 
format used for partial fractions is more complicated, but is usually provided.   
 
Improper fraction (numerator has order greater than or equal to denominator): 
 

Write 
2𝑥2−𝑥+11

(2𝑥−3)(𝑥+2)
 in the form 𝐴 +

𝐵

2𝑥−3
+

𝐶

𝑥+2
 and hence find ∫

2𝑥2−𝑥+11

(2𝑥−3)(𝑥+2)
 𝑑𝑥.   

 
2𝑥2 − 𝑥 + 11 ≡ 𝐴(2𝑥 − 3)(𝑥 + 2) + 𝐵(𝑥 + 2) + 𝐶(2𝑥 − 3) 

 
𝑥 = −2 ⟹ 𝐶 = −3 

 
2𝑥2 − 𝑥 + 11

(2𝑥 − 3)(𝑥 + 2)
= 𝟏 +

𝟒

(𝟐𝒙 − 𝟑)
−

𝟑

𝒙 + 𝟐
 

 

𝑥 =
3

2
⟹ 𝐵 = 4 

 

∫
2𝑥2 − 𝑥 + 11

(2𝑥 − 3)(𝑥 + 2)
 𝑑𝑥 = ∫ 1 +

4

(2𝑥 − 3)
−

3

𝑥 + 2
 𝑑𝑥 

𝑥 = 0 ⟹ 𝐴 = 1 
 

 
= 𝒙 + 𝟐 𝐥𝐧(𝟐𝒙 − 𝟑) − 𝟑 𝐥𝐧(𝒙 + 𝟐) + 𝑪 

 
 

Repeated factors in the denominator (eg squared bracket): 
 

Write 
𝑥

(𝑥+1)(𝑥−1)2 in the form 
𝐴

𝑥+1
+

𝐵

𝑥−1
+

𝐶

(𝑥−1)2 and hence find ∫
𝑥

(𝑥+1)(𝑥−1)2  𝑑𝑥.   

 
𝑥 ≡ 𝐴(𝑥 − 1)2 + 𝐵(𝑥 + 1)(𝑥 − 1) + 𝐶(𝑥 + 1) 

 

𝑥 = 1 ⟹ 𝐶 =
1

2
 

 

𝑥

(𝑥 + 1)(𝑥 − 1)2
= −

𝟏

𝟒(𝒙 + 𝟏)
+

𝟏

𝟒(𝒙 − 𝟏)
+

𝟏

𝟐(𝒙 − 𝟏)𝟐
 

𝑥 = −1 ⟹ 𝐴 = −
1

4
 

 

∫
𝑥

(𝑥 + 1)(𝑥 − 1)2
 𝑑𝑥 =

1

4
∫ −

1

(𝑥 + 1)
+

1

(𝑥 − 1)
+

2

(𝑥 − 1)2
 𝑑𝑥 

𝑥 = 0 ⟹ 𝐵 =
1

4
 

 

=
𝟏

𝟒
(− 𝐥𝐧(𝒙 + 𝟏) + 𝐥𝐧(𝒙 − 𝟏) −

𝟐

𝒙 − 𝟏
) + 𝑪 

 

Watch out for: opportunities to use ∫
𝑓′(𝑥)

𝑓(𝑥)
 𝑑𝑥 = ln|𝑓(𝑥)| + 𝐶 since these may 

look like candidates for partial fractions but a quick check will often confirm that 
the numerator is the differential of the denominator (or can be made into such 
by multiplying or dividing by a number).   

Eg ∫
2𝑥+5

2𝑥2+10𝑥+1
 𝑑𝑥 =

1

2
∫

4𝑥+10

2𝑥2+10𝑥+1
 𝑑𝑥 =

𝟏

𝟐
𝐥𝐧(𝟐𝒙𝟐 + 𝟏𝟎𝒙 + 𝟏) + 𝑪  



Integration using standard results 
While you may be asked to prove some of these results using a suitable method, 
unless explicitly asked to do so you may assume all of these throughout your 
work.  Often a more involved integration problem will incorporate one or more of 
the standard results.  They are on pages 7 and 8 of the AQA Formula Book.   
 

What to look for with standard results 
 

While you don’t need to memorize these results, you do need to be able to spot 
them when they show up in questions.  Make use of both lists (shown below).  
Note that the hyperbolic trig results (𝑠𝑖𝑛ℎ, 𝑐𝑜𝑠ℎ, etc) are for Further Maths only.     
 

Differentiation Integration 

  

 Watch out for: trig functions (everything except 𝑠𝑖𝑛 and 𝑐𝑜𝑠 are provided, 
including inverse trig and 𝑠𝑒𝑐, 𝑐𝑜𝑠𝑒𝑐 and 𝑐𝑜𝑡.  Also note the variations involving 
𝑥2 in the denominator of a fraction – some rearrangement may be necessary.   
Eg: 

∫
4

√5 − 𝑥2
 𝑑𝑥 = 4 ∫

1

√(√5)
2

− 𝑥2

 𝑑𝑥 = 𝟒 𝐬𝐢𝐧−𝟏 (
𝒙

√𝟓
) + 𝑪 


