How to answer Exam Questions

Step-by-step guide to answering exam questions on these key topics:

Pythagoras

- **Right-angled Trigonometry**
- Non-right-angled Trigonometry

Simultaneous Equations

How to answer Pythagoras questions

-		
Step 1:	Write out Pythagoras' Theorem.	$a^2 + b^2 = c^2$
Step 2:	Identify the Hypotenuse . This is the 5cm	
	longest side of the triangle, and is always	C a
	represented by c in the formula.	<u>3cm</u>
	Remember, a and b can be any way	b
	round as long as c is the longest side	
	(always opposite the right angle).	
Step 3:	Substitute the numbers into the formula.	$a^2 + 3^2 = 5^2$
Step 4:	Rearrange and simplify the equation,	$a^2 + 9 = 25$
	then solve to find the value of the	$a^2 = 16$
	unknown side.	a = 4
Step 5:	Remember to round your answer if the	a = 4cm
	question asks you to, and include units.	

How to answer Right-angled Trigonometry questions

Step 1:	Label the sides of the triangle with Hyp, Opp and Adj. These stand for: hypotenuse (longest side, always opposite the right angle), opposite (opposite the angle we are interested in) and adjacent (next to ('adjacent to') the angle we are interested in)	Opp 3cm Adj
Step 2:	Work out which trigonometric formula you need to use. This is decided by which of the two sides you are interested in.	$\sin x = \frac{Opp}{Hyp}$ $\cos x = \frac{Adj}{Hyp}$ $\tan x = \frac{Opp}{Adj}$
Step 3:	Substitute in the numbers you know.	$\sin x = \frac{3}{6}$
Step 4:	Rearrange (if necessary) and solve. Remember, the opposite of <i>sin</i> is sin^{-1} . It's usually found above the <i>sin</i> button on your calculator, activated by pressing <i>shift</i> .	$\sin x = 0.5$ $x = \sin^{-1} 0.5$ $x = 30$
Step 5:	Remember to round your answer if the question asks you to, and include units.	$x = 30^{\circ}$

How to answer Non-right-angled Trigonometry questions

		L 1
Step 1:	Label your triangle. Use	b 5cm
	lower case a , b and c for the	A 30° C ∕
	sides (any order), and upper	
	case A , B and C for the	4 cm B x a
	angles, so that angle A is	c Š
	opposite side a , etc.	· ·
Step 2:	Decide which rule to use (all	In any triangle ABC
	given in the front of your	С
	exam).	b a
	Sine Rule is for when you	
	know the length of a side	$A \longrightarrow B$
	and the opposite angle (eg b	С
	and B).	
	Cosine Rule is for when you	Sine Rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
	don't (eg, you have all 3	Cosine Rule $a^2 = b^2 + c^2 - 2bc \cos A$
	sides but no angles, or you	cosme Kule a - b + c - 2bc cos A
	have 2 sides and the angle in	Area of triangle $=\frac{1}{2}ab\sin C$
	between).	2
	Area of a triangle can	
	calculate the area of any	
	triangle as long as you know	
	two sides and the angle in	
	between.	
Step 3:	Substitute your values into	$a^2 = b^2 + c^2 - 2bc\cos A$
	the formula.	$x^2 = 5^2 + 4^2 - 2 \times 5 \times 4$
		$\times \cos 30$
Step 4:	Rearrange and solve to find	$x^2 = 6.3589 \dots$
	the unknown values.	$x = 2.5217 \dots$
Step 5:	Remember to round your	
	answer if the question asks	$x = 2.52cm \ to \ 3 \ s. f.$
	you to, and include units.	,
L		1

How to answer Simultaneous Equations questions

Substitution Method

Note: Often the Elimination method is slightly quicker, but is trickier to understand, and doesn't work for more complicated equations.

Step 1:	Choose the simplest looking	6x + 2y = -3
Step 1.	equation, and rearrange so it gives	2y = -3 - 6x
	<i>x</i> in terms of <i>y</i> or <i>y</i> in terms of <i>x</i> .	y = -1.5 - 3x
Step 2:	Substitute this expression for <i>x</i> (or	4x - 3y = 11
	y, as in this example) into the	4x - 3(-1.5 - 3x) = 11
	other equation. Wherever you see	
	that letter, replace it with what our	
	first equation says it is equal to.	
Step 3:	Simplify, rearrange and solve to	4x + 4.5 + 9x = 11
	find one of the unknowns.	13x + 4.5 = 11
		13x = 6.5
		x = 0.5
Step 4:	Substitute this value back into	y = -1.5 - 3x
	whichever equation looks simplest	$y = -1.5 - 3 \times 0.5$
	(the one you made from the first	y = -1.5 - 1.5
	equation is usually best).	y = -3
Step 5:	Check that your solutions work in	
	the original equations, and then	x = 0.5 $y = -3$
	write them as your final answer.	

Note: if one of your equations is a quadratic, step 3 will take more work, as you will need to solve a quadratic equation.