Gravity Bounds

The acceleration due to gravity experienced by any mass close to the surface of the earth can be calculated using the following formula:

$$g = \frac{GM}{r^2}$$

G is the gravitational constant, M is the mass of the earth and r is the radius of the earth.

The mass of the earth is $5.97 \times 10^{24} kg$, to 3 significant figures. The radius of the earth is 6371000 m, to the nearest 1000 m. The gravitational constant, *G*, is 6.67×10^{-11} to 3 significant figures.

1. Using the values given above, calculate *g*.

Taking the values given above, $m{g}$ is equal to: _____

2. By taking into account the precision of the measurements given, and considering upper and lower bounds, find the range of possible values *g* could take.

The greatest possible value of g is: _____ ms^{-2}

The least possible value of g is: _____ ms^{-2}

3. Using the upper and lower bounds you have now found for the value of g, write down the value for g, rounding to an appropriate degree of accuracy.

y is	ms^{-2} correct to	significant figures
Gravity Bounds SOLUTIONS		

 ms^{-2}

The acceleration due to gravity experienced by any mass close to the surface of the earth can be calculated using the following formula:

$$g = \frac{GM}{r^2}$$

G is the gravitational constant, M is the mass of the earth and r is the radius of the earth.

The mass of the earth is $5.97 \times 10^{24} kg$, to 2 significant figures. The radius of the earth is 6371000 m, to the nearest 1000 m. The gravitational constant, *G*, is 6.67×10^{-11} to 3 significant figures.

1. Using the values given above, calculate *g*.

$$g = \frac{(6.67 \times 10^{-11}) \times (5.97 \times 10^{24})}{6371000^2}$$

Taking the values given above, g is equal to: 9.81036023452388 ms^{-2}

2. By taking into account the precision of the measurements given, and considering upper and lower bounds, find the range of possible values *g* could take.

 $5.965 \times 10^{24} \le m < 5.975 \times 10^{24}$

 $6370500 \le r < 6371500$

 $6.665 \times 10^{-11} \le G < 6.675 \times 10^{-11}$

$$\frac{G_L m_L}{(r_U)^2} \le g < \frac{G_U m_U}{(r_L)^2}$$

The greatest possible value of g is: 9.8274793416876 ms^{-2}

The least possible value of g is: 9.79325869624054 ms^{-2}

3. Using the upper and lower bounds you have now found for the value of g, write down the value for g, rounding to an appropriate degree of accuracy.

$9.7932 \dots \leq g < 9.8274 \dots$

All values within this range round to 9.8 to 2 s. f., but to 3 s. f. they are no longer the same.

g is9.8 ms^{-2} correct to2significant figuresNote: This gives an error interval of $9.75 \le g < 9.85$ which contains the calculated interval.