Graph Theory Terminology

Tree

A connected graph (eg a subgraph) with no cycles.

Spanning Tree

A *tree* that connects all vertices. Any connected graph has a spanning tree, and a graph with n vertices will have n - 1 edges in its spanning tree. Note: a *minimum spanning tree*, for a network, is a spanning tree with the smallest possible total weighting of edges.

Kruskal's Algorithm finds a minimum spanning tree by selecting edges in order of weighting, smallest first, ensuring no cycles are created as each edge is added.

Prim's Algorithm, which can also be applied easily in matrix form, finds a minimum spanning tree by starting from a given vertex and at each step linking to the nearest unused vertex.

Trail

A walk (a route through the graph) that doesn't repeat edges.

An *Eulerian Trail* traverses every edge (and, since it is a trail, that means exactly once).

A graph with an Eulerian trail starting and finishing at the same vertex is *Eulerian* (if the Eulerian trail starts and finishes at different vertices the graph is *semi-Eulerian*). Eulerian graphs have no odd vertices, and semi-Eulerian graphs have exactly two odd vertices.

The **Chinese Postman** algorithm augments a network by adding edges to make it Eulerian or semi-Eulerian in order to traverse the minimum distance while covering every edge.

Path

A *trail* that doesn't repeat vertices (except sometimes first and last).

Note: If you can't repeat vertices, it is impossible to repeat edges, so a path is necessarily also a trail.

A *Hamiltonian path* visits every vertex (and, since it is a path, that means exactly once).

Cycle

A *path* whose first and last vertices are the same (a closed path with at least one edge).

Note: since it is a path it cannot repeat vertices or edges. Also, it must contain at least two vertices (otherwise it would be a loop).

A *Hamiltonian cycle* visits every vertex (and, since it is a cycle, that means exactly once, but starting and finishing at the same vertex). Also called a '*tour*'.

The **Travelling Salesman Problem** attempts to find a Hamiltonian cycle (a tour) with the minimum weighting for a network. By combining minimum spanning trees with two additional edges (the **lower bound algorithm**), lower bounds are found, and by finding examples of Hamiltonian cycles (the **nearest neighbour algorithm**), upper bounds are found. A direct solution is rarely computationally feasible.

