Deriving the SUVAT (kinematics) equations

Assumptions:

$$average speed = \frac{distance}{time}$$
(1)
$$acceleration = \frac{change in speed}{change}$$
(2)

Variables:

$$s = displacement (m)$$

$$u = initial velocity (ms^{-1})$$

$$v = final velocity (ms^{-1})$$

$$a = acceleration (ms^{-2})$$

$$t = time (s)$$
(3)

Deriving
$$v = u + at$$
: Writing (2) using the variables from (3):
 $a = \frac{v - u}{t}$
Rearranging:

(4)v = u + at

Mechanics

motion in a straight line with

Kinematics

 $\frac{1}{2}(u + v)t$

Intuition behind the formula: The speed increases according to the size of the acceleration and the time for which the particle is accelerating.

Deriving
$$s = \left(\frac{u+v}{2}\right)t$$
:
Writing (1) using the variables from (3):
 $\frac{u+v}{2} = \frac{s}{t}$
Rearranging:
 $s = \left(\frac{u+v}{2}\right)t$
(5)

Intuition behind the formula: The distance travelled is the average speed multiplied by the time. Since acceleration is constant, the average speed is halfway between u and v.

Deriving $s = ut + \frac{1}{2}at^2$: Substituting an expression for v from (4) into (5): $s = \frac{u + (u + at)}{c}t$

Rearranging:

$$s = \frac{2u + at}{2}t$$
$$s = ut + \frac{1}{2}at^{2}$$

$$s = ut + \frac{1}{2}at^2$$

Note: All on p.4 of the Edexcel Formula Book. Note: $s = vt - \frac{1}{2}at^2$ can be derived by subbing in u instead of v.

Intuition behind the formula: A fixed speed corresponds to a linear increase in displacement, but if speed is increasing, displacement increases quadratically.

Deriving
$$v^2 = u^2 + 2as$$
: Substituting an expression for t from (4) into (5):

$$s = \frac{u+v}{2} \left(\frac{v-u}{a}\right) = \frac{(v+u)(v-u)}{2a}$$

$$s = \frac{v^2 - u^2}{2a}$$

$$v^2 = u^2 + 2as$$

Intuition behind the formula: The kinetic energy of a body is given by $\frac{1}{2}mv^2$, and energy transferred is given by $ma \times s$, so this is just "Final KE equals initial KE plus work done".

Deriving SUVAT Equations

Assumptions:	average speed = $\frac{distance}{time}$ acceleration = $\frac{change \text{ in speed}}{change \text{ in speed}}$	(1)
Variables:	time s = displacement (m) $u = initial velocity (ms^{-1})$ $v = final velocity (ms^{-1})$ $a = acceleration (ms^{-2})$ t = time (s)	(3)
Deriving $v = u + at$:	Writing (2) using the variables from (3): $a = \frac{v - u}{t}$	
	Rearranging:	(4)

Intuition behind the formula: The speed increases according to the size of the acceleration and the time for which the particle is accelerating.

Deriving
$$s = \frac{u+v}{2}t$$
:
Writing (1) using the variables from (3):
 $\frac{u+v}{2} = \frac{s}{t}$
Rearranging:
 $s = \frac{u+v}{2}t$
(5)

Intuition behind the formula: The distance travelled is the average speed multiplied by the time. Since acceleration is constant, the average speed is halfway between u and v.

Deriving $s = ut + \frac{1}{2}at^2$: Substituting an expression for v from (4) into (5): $s = \frac{u + (u + at)}{2}t$

Rearranging:

$$s = \frac{2u + at}{2}t$$
$$s = ut + \frac{1}{2}at^{2}$$

v = u + at

Note: $s = vt - \frac{1}{2}at^2$ can be derived by substituting for u instead of v.

Intuition behind the formula: A fixed speed corresponds to a linear increase in displacement, but if speed is increasing, displacement increases quadratically.

Deriving
$$v^2 = u^2 + 2as$$
: Substituting an expression for t from (4) into (5):

$$s = \frac{u+v}{2} \left(\frac{v-u}{a}\right) = \frac{(v+u)(v-u)}{2a}$$

$$s = \frac{v^2 - u^2}{2a}$$

$$v^2 = u^2 + 2as$$

Intuition behind the formula: The kinetic energy of a body is given by $\frac{1}{2}mv^2$, and energy transferred is given by $ma \times s$, so this is just "Final KE equals initial KE plus work done".