A-Level Maths in a week

<u>Core Maths</u> - Co-ordinate Geometry of Circles

Generating and manipulating graph equations of circles.

<u>Statistics</u> - Binomial Distribution

Developing a key tool for calculating probability for a large number of trials.

<u>Mechanics</u> - *Kinematics*

Extending formulae for velocity and acceleration to develop powerful tools for describing motion.

Overview of A-level Courses

Straight Statistics	Maths & Statistics	Maths & Mechanics	Further Maths
Modules:	Modules:	Modules:	Modules:
Statistics \times 6	Pure Maths \times 4	Pure Maths \times 4	Pure Maths \times 7
	Statistics $\times 2$	Mechanics \times 2	Statistics \times 2
			Mechanics \times 2
			Decision \times 1
This course focuses	Two-thirds of the course is pure		Over half of this course is
on statistical	mathematics, during which you will build		pure mathematics,
techniques without	on the basis of highe	covering all the content	
requiring an	algebra, geometry ar	nd trigonometry, as	of the A-level Maths
especially high	well as learning and	courses in addition to 3	
level of algebraic	and techniques in calculus.		'Further Pure' modules
manipulation.	One third of the	One third of the	which introduce new
Ideal for students	course will focus	course will focus on	ideas such as matrices
who want to	on the	the development of	and complex numbers.
pursue Statistics	development of	mechanical ideas	Includes an introduction
but are not	statistical ideas	such as forces,	to Decision Mathematics
especially	such as probability,	energy and motion.	which is concerned with
confident with	data handling and	It builds on GCSE	networks, algorithms
A/A* level material	hypotheses testing.	topics such as	and sorting. While the
from the GCSE	It builds on GCSE	vectors and	content is twice as much
course. You still	topics such as	compound	as a single A-level, the
need a solid basis	scatter-graphs and	measures. This	course is taught in just 7
of mathematics.	tree diagrams.	subject fits in well	lessons a week, not 10.
	This subject fits in	with Physics.	This demanding course
	well with		requires a high level of
	Economics.		competence.

Contents

Page 3		
Page 4		
Page 5		
Page 6		
Page 7		
Page 8		
Page 9		
Page 10		
Page 11		
Page 12		

Core Maths

Co-ordinate Geometry of Circles

Prerequisites: You should already have some familiarity with:

- Straight line graphs (y = mx + c)
- Pythagoras' Theorem $(a^2 + b^2 = c^2)$
- Graph transformations (specifically translation)
- Quadratic expressions (Completing the Square, and $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$)

Key Points: You will learn about and use:

- A circle of radius 1 with centre (0,0) is given by: $x^2 + y^2 = 1$.
- A circle of radius R with centre (a,b) is given by: $(x a)^2 + (y b)^2 = R^2$

1. Find the equation of the circle shown:

2. Find the equation of a circle centred at the origin with radius $\sqrt{5}$.

3. Write down the radius of the circle with equation $x^2 + y^2 = 36$.

4. Find the centre and radius of the circle with equation $(x - 2)^2 + (y + 1)^2 = 8$

5. Find the equation of the circle shown, and find the equation of a diameter line passing through (0,0):

Statistics

Binomial Distribution

Prerequisites: You should already have some familiarity with:

- Probability: $P(A \text{ and } B) = P(A) \times P(B)$, P(A or B) = P(A) + P(B)
- Tree diagrams.

Key points: You will learn about and use:

- Binomial Theorem: $P(X = r) = {}_{n}C_{r}p^{r}(1-p)^{n-r}$ where r = number of successes, p = probability of success and n = number of trials.
- Factorial: $n! = n(n-1)(n-2) \dots (3)(2)(1)$, eg $4! = 4 \times 3 \times 2 \times 1 = 24$.
- Pascal's Triangle:

Statistics – Binomial Distribution – Notes

The chance of getting a six 3 times, followed by not a six the next 2 times is:

$$\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{5}{6} \times \frac{5}{6} = \left(\frac{1}{6}\right)^3 \times \left(\frac{5}{6}\right)^2 = \frac{25}{7776} \approx 0.322\%$$

The chance of getting a six any 3 times in 5 rolls is greater than this, since there are lots of different orders in which this could happen: 11100, 11010, 11001, 10110, 10101, 10011, 01110, 01101, 01011 or 00111.

Since there are 10 different ways of getting 3 sixes in 5 rolls, the probability of getting 3 sixes in 5 rolls, in any order, is $10 \times \left(\frac{1}{6}\right)^3 \times \left(\frac{5}{6}\right)^2 = \frac{250}{7776} \approx 3.22\%$

For larger numbers, the ${}_{n}C_{r}$ function on your calculator will give you this. Eg: The number of ways of choosing 7 items from 32 is: ${}_{32}C_{7} = 3365856$.

To calculate, enter:

[3] [2] [SHIFT] [÷] [7] [=]

A situation can be modelled using the binomial distribution if it has:

- A fixed number of trials (*n*)
- Two possible outcomes (described as success or failure)
- The probability of success is the same for every trial (*p*)
- Trials are independent.

The chance of r successes in n trials with probability of success p is: ${}_{n}C_{r} \times p^{r} \times (1-p)^{n-r}$

Eg: The chance of getting a 4 on a six-sided dice five times in twelve throws is given by:

$$_{12}C_5 \times \left(\frac{1}{6}\right)^5 \times \left(\frac{5}{6}\right)^7 = 792 \times \frac{1}{7776} \times \frac{78125}{279936} = \frac{61875000}{2176782336} \approx 2.84\%$$

Statistics – Binomial Distribution – Questions

1. How many ways can the letters of the word 'thousand' be rearranged?

2. A team of 5 is to be chosen at random from each class of students in a school. How many different teams are possible for a class of 30 students?

3. A 5-card poker hand is dealt from a deck of 52 unique playing cards. How many possibilities are there?

4. What is the probability that a fair coin tossed 20 times shows heads exactly 10 times?

5. a) What is the probability that a fair six-sided die shows a 3 exactly once in 6 throws?

b) What is the probability that it shows a 3 exactly twice?

c) What is the probability that it never shows a 3?

d) What is the probability that it shows a 3 on at least half of the six throws?

6. A game pays out if you can throw five dice and get the same number on each. The chance of this happening is $\frac{1}{1296}$. Find the probability that, after 1000 people play the game, no more than 2 people win.

Mechanics

Kinematics

Prerequisites: You should already have some familiarity with:

- Velocity: $v = \frac{d}{t}$.
- Acceleration: $a = \frac{v}{t}$.
- Vectors (specifically the concept of a direction in addition to magnitude).

Key points: You will learn about and use:

S	Displacement	т
u	Initial velocity	m/s
v	Final velocity	m/s
a	Acceleration	m/s^2
t	Time	S

Equation	Quantities involved					
v = u + at	S	u	v	а	t	
$s = vt - \frac{1}{2}at^2$	S	u	v	а	t	
$s = ut + \frac{1}{2}at^2$	S	u	V	а	t	
$s = \frac{u+v}{2}t$	S	u	v	а	t	
$v^2 = u^2 + 2as$	S	u	V	а	t	

Mechanics - Kinematics - Questions

1. A car accelerates at a rate of $5m/s^2$ from an initial speed of 12m/s for 8 seconds. Find the final speed.

2. A 2007 Aston Martin V8 Vantage accelerates from 0 to 60mph (26.8*m*/*s*) in 4.8 seconds. Find the distance the car would travel during this time, assuming acceleration is at a constant rate.

3. Felix Baumgartner performed a freefall jump from a height of 40km (to reduce to practically nothing the effect of air resistance). His constant acceleration due to gravity was $9.8m/s^2$. a) Find the distance he fell during the first 10 seconds of motion.

b) Find the distance travelled during the next 10 seconds. (Hint: find the total displacement for 20 seconds)

4. Top Gear raced a Porsche 911 against a VW Beetle. The Porsche drove along a mile-long track (1600*m*) while the Beetle was dropped from a helicopter a mile above the finish line. a) The Porsche accelerates from rest at a constant rate of $4.5m/s^2$ for the first 10 seconds, then continues at a constant speed. Find the top speed, the distance covered in the first 10 seconds and hence the total time taken to reach the finish.

b) Ignoring air resistance, calculate the time taken for the Beetle to reach the ground. Take the acceleration due to gravity as $9.8m/s^2$.

c) Explain why your answer to b) would, in reality, be an overestimate.

 The centre is at (0,0) and the radius is 3, so:

$$x^2 + y^2 = 9$$

2. Find the equation of a circle centred at the origin with radius $\sqrt{5}$.

$$x^2 + y^2 = 5$$

3. Write down the radius of the circle with equation $x^2 + y^2 = 36$.

4. Find the centre and radius of the circle with equation $(x - 2)^2 + (y + 1)^2 = 8$

Centre:
$$(2, -1)$$
 Radius = $\sqrt{8} = 2\sqrt{2} \approx 2.83$

10

Statistics – Binomial Distribution – SOLUTIONS

1. How many ways can the letters of the word 'thousand' be rearranged?

$$8! = 8 \times 7 \times 6 \times 5 \times 43 \times 2 \times 1 = 40320$$

2. A team of 5 is to be chosen at random from each class of students in a school. How many different teams are possible for a class of 30 students?

$$_{30}C_5 = \mathbf{142506}$$

3. A 5-card poker hand is dealt from a deck of 52 unique playing cards. How many possibilities are there?

$$_{52}C_5 = \mathbf{2598960}$$

4. What is the probability that a fair coin tossed 20 times shows heads exactly 10 times?

$$_{20}C_{10} \times \left(\frac{1}{2}\right)^{10} \times \left(\frac{1}{2}\right)^{10} = \frac{184756}{1048576} = 17.6\%$$

5. a) What is the probability that a fair six-sided die shows a 3 exactly once in 6 throws?

$$_6C_1 \times \left(\frac{1}{6}\right) \times \left(\frac{5}{6}\right)^5 = \mathbf{40.2\%}$$

b) What is the probability that it shows a 3 exactly twice?

$$_{6}C_{2} \times \left(\frac{1}{6}\right)^{2} \times \left(\frac{5}{6}\right)^{4} = 20.1\%$$

c) What is the probability that it never shows a 3?

$$_{6}C_{0} \times \left(\frac{1}{6}\right)^{0} \times \left(\frac{5}{6}\right)^{6} = 33.5\%$$

d) What is the probability that it shows a 3 on at least half of the six throws?

$$100\% - 40.2\% - 20.1\% - 33.5\% = 6.23\%$$

6. A game pays out if you can throw five dice and get the same number on each. The chance of this happening is $\frac{1}{1296}$. Find the probability that, after 1000 people play the game, no more than 2 people win.

$${}_{1000}C_0 \times \left(\frac{1}{1296}\right)^0 \times \left(\frac{1295}{1296}\right)^{1000} + {}_{1000}C_1 \times \left(\frac{1}{1296}\right)^1 \times \left(\frac{1295}{1296}\right)^{999} + {}_{1000}C_2 \times \left(\frac{1}{1296}\right)^2 \times \left(\frac{1295}{1296}\right)^{998} = 46.2\% + 35.7\% + 13.8\% = 95.7\%$$

Mechanics - Kinematics - SOLUTIONS

1. A car accelerates at a rate of $5m/s^2$ from an initial speed of 12m/s for 8 seconds. Find the final speed.

$$v = u + at = 12 + 5 \times 8 = 52m/s$$

2. A 2007 Aston Martin V8 Vantage accelerates from 0 to 60mph (26.8*m*/*s*) in 4.8 seconds. Find the distance the car would travel during this time, assuming acceleration is at a constant rate.

$$s = \frac{u+v}{2}t = \frac{0+26.8}{2} \times 4.8 = 64.32m$$

3. Felix Baumgartner performed a freefall jump from a height of 40km (to reduce to practically nothing the effect of air resistance). His constant acceleration due to gravity was $9.8m/s^2$.

a) Find the distance he fell during the first 10 seconds of motion.

$$s = ut + \frac{1}{2}at^2 = 0 + \frac{1}{2} \times 9.8 \times 10^2 = 490m$$

b) Find the distance travelled during the next 10 seconds. (Hint: find the total displacement for 20 seconds)

$$s = ut + \frac{1}{2}at^2 = 0 + \frac{1}{2} \times 9.8 \times 20^2 = 1960m \implies 2^{nd} \ 10 \ seconds: \ 1960 - 490 = 1470m$$

4. Top Gear raced a Porsche 911 against a VW Beetle. The Porsche drove along a mile-long track (1600*m*) while the Beetle was dropped from a helicopter a mile above the finish line.

a) The Porsche accelerates from rest at a constant rate of $4.5m/s^2$ for the first 10 seconds, then continues at a constant speed. Find the top speed, the distance covered in the first 10 seconds and hence the total time taken to reach the finish.

$$v = u + at = 0 + 4.5 \times 10 = 45m/s$$

$$s = \frac{u + v}{2} \times t = \frac{0 + 45}{2} \times 10 = 225m \quad or \quad s = ut + \frac{1}{2}at^2 = 0 + \frac{1}{2} \times 4.5 \times 10^2 = 225m$$

Distance to be covered at a constant speed of 45m/s: 1600 - 225 = 1375mTime taken (at constant speed): $speed = \frac{distance}{time} \implies 45 = \frac{1375}{t} \implies t = \frac{1375}{45} = 30.6s \text{ to } 3 \text{ s. } f.$

b) Ignoring air resistance, calculate the time taken for the Beetle to reach the ground. Take the acceleration due to gravity as $9.8m/s^2$.

$$s = ut + \frac{1}{2}at^2 \implies 1600 = 0 + \frac{1}{2} \times 9.8 \times t^2 \implies \frac{1600}{4.9} = t^2 \implies t = 18. \, 1s \, to \, 3 \, s. \, f.$$

c) Explain why your answer to b) would, in reality, be an overestimate.

In reality, air resistance would have a large effect on a large object like a car falling at high speed. If the object only fell a short distance, it wouldn't get fast enough for air resistance to make much difference, but falling a mile means the car is limited by terminal velocity (around 100mph) so it can't just keep getting faster.