Summary Method C2 (Jan '08)

1.

a)

Recall that the area of a sector is given by: $A = \frac{1}{2}r^2\theta$ (where θ is measured in radians).

b)

Recall that the arc length is given by: $L = r\theta$. Don't forget to include the length of the two radii.

2.

a)

The common difference is the number added to get from one term to the next (note: while not in this case, the common difference could be negative).

b)

Use a = 51 and the common difference calculated in a), along with the U_n formula (given in the formula book).

c)

One method is to calculate (using the formula in the formula book) $S_{200} - S_{100}$. The other is to treat the last half of the series as a new series with the same common difference, but *a* equal to U_{101} as calculated in part b).

3.

a)

Use the sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ (which is not provided in the formula book).

b)

Use the area formula: $A = \frac{1}{2}ab \sin C$ (which is also not provided in the formula book).

4.

The formula for the trapezium rule is provided in the formula book. Ordinates will be $x_0 = 0, x_1 = 1, x_2 = 2, x_3 = 3$.

5.

a)

i.

Differentiate, remembering that reducing $\frac{1}{2}$ by 1 gives $-\frac{1}{2}$.

ii.

Substitute the *x* coordinate of x = 4 into your answer for i.

iii.

Use the straight line formula $y - y_1 = m(x - x_1)$ with the point P and the gradient $-\frac{1}{m}$ where *m* is the gradient of the curve given in ii.

iv.

Use the line equation you calculated in iii. to determine the *y*-intercept, then use $A = \frac{1}{2}bh$ to find area. v.

Maxima occur when $\frac{dy}{dx} = 0$, so set the gradient (found in i.) to 0 and solve for *x*.

b) i.

Remember when integrating to divide by the power. Recall that dividing by $\frac{5}{2}$ is the same as multiplying by $\frac{2}{5}$.

ii.

Use your integral, adding limits of the x coordinates of O and P, to find the area under the curve bounded by the x axis. Add the area of the triangle below, calculated in a) iv.

6.

a)

i.

The binomial expansion formulae are included in the formula book. For small, positive integer values of n such as these, Pascal's triangle will probably be quickest.

ii.

As above.

b)

i.

Replace *x* in the previous expression with 4x. Remember that x^3 will become $(4x)^3$, not $4x^3$.

ii.

As above.

c)

Use the expressions calculated in part b) to simplify the expression. Some terms cancel.

7.

a) Use the log rule $\log_a x - \log_a y = \log_a \frac{x}{y}$ to combine the logs on the right-hand side.

b)

Recall that $\log_a a = 1$ and $n \log_a x = \log_a x^n$. Combine the logs on the right-hand side and simplify.

8. a)

Substitute some values in, and sketch the appropriate exponential curve. Note that the graph should have an asymptote on the *x* axis (approaching zero as *x* approaches $-\infty$), and it should cross the *y* axis at the point (0,1) like all such curves, since $a^0 = 1$.

b) i.

Recall that the transformation $f(x) \rightarrow f(ax)$ represents a stretch in the *x* direction of scale factor $\frac{1}{a}$. ii.

Recall that the transformation $f(x) \rightarrow f(x + a)$ represents a translation of $\begin{bmatrix} -a \\ 0 \end{bmatrix}$.

c)

i.

Note that $9^x = (3^2)^x = 3^{2x}$ and that $3^{x+1} = 3^x \times 3^1$. Rearrange and factorise. ii.

Solve the factorised quadratic, substitute back the value of *Y*, and take logs of both sides to find a solution for *x* in each case.

9.

a)

Multiply both sides by the denominator on the left, substitute $1 - \cos^2 \theta$ for the $\sin^2 \theta$ on the left, simplify and solve the resultant quadratic.

b)

Let $\theta = 3x$, then solve the simplified solution from part a) by changing your limits ($0^\circ < 3x < 540^\circ$), drawing the graph of $\cos \theta$ and finding all solutions in the range, before converting back to find solutions for x.