For this paper you must have:
* an 8-page answer book
* the blue AQA booklet of formulae and statistical tables.
You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions
• Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
• Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC3.
• Answer all questions.
• Show all necessary working; otherwise marks for method may be lost.

Information
• The maximum mark for this paper is 75.
• The marks for questions are shown in brackets.

Advice
• Unless stated otherwise, you may quote formulae, without proof, from the booklet.
Answer all questions.

1. (a) Find $\frac{dy}{dx}$ when:

 (i) \(y = (2x^2 - 5x + 1)^2 \);
 (ii) \(y = x \cos x \).

(b) Given that

 \[y = \frac{x^3}{x - 2} \]

 show that

 \[\frac{dy}{dx} = \frac{kx^2(x - 3)}{(x - 2)^2} \]

 where \(k \) is a positive integer.

2. (a) Solve the equation \(\cot x = 2 \), giving all values of \(x \) in the interval \(0 \leq x \leq 2\pi \) in radians to two decimal places.

(b) Show that the equation \(\csc^2 x = \frac{3 \cot x + 4}{2} \) can be written as

 \[2 \cot^2 x - 3 \cot x - 2 = 0 \]

(c) Solve the equation \(\csc^2 x = \frac{3 \cot x + 4}{2} \), giving all values of \(x \) in the interval \(0 \leq x \leq 2\pi \) in radians to two decimal places.
3 The equation
\[x + (1 + 3x)^{\frac{1}{4}} = 0 \]
has a single root, \(a \).

(a) Show that \(a \) lies between \(-0.33\) and \(-0.32\). (2 marks)

(b) Show that the equation \(x + (1 + 3x)^{\frac{1}{4}} = 0 \) can be rearranged into the form
\[x = \frac{1}{3}(x^4 - 1) \] (2 marks)

(c) Use the iteration \(x_{n+1} = \frac{(x_n^4 - 1)}{3} \) with \(x_1 = -0.3 \) to find \(x_4 \), giving your answer to three significant figures. (3 marks)

4 The functions \(f \) and \(g \) are defined with their respective domains by
\[f(x) = x^3, \quad \text{for all real values of } x \]
\[g(x) = \frac{1}{x - 3}, \quad \text{for real values of } x, x \neq 3 \]

(a) State the range of \(f \). (1 mark)

(b) (i) Find \(fg(x) \). (1 mark)

(ii) Solve the equation \(fg(x) = 64 \). (3 marks)

(c) (i) The inverse of \(g \) is \(g^{-1} \). Find \(g^{-1}(x) \). (3 marks)

(ii) State the range of \(g^{-1} \). (1 mark)

5 (a) (i) Given that \(y = 2x^2 - 8x + 3 \), find \(\frac{dy}{dx} \). (1 mark)

(ii) Hence, or otherwise, find
\[\int_{4}^{6} \frac{x - 2}{2x^2 - 8x + 3} \, dx \]
giving your answer in the form \(k \ln 3 \), where \(k \) is a rational number. (4 marks)

(b) Use the substitution \(u = 3x - 1 \) to find \(\int x\sqrt{3x - 1} \, dx \), giving your answer in terms of \(x \). (4 marks)

Turn over for the next question
6 (a) Sketch the curve with equation \(y = \csc x \) for \(0 < x < \pi \). (2 marks)

(b) Use the mid-ordinate rule with four strips to find an estimate for \(\int_{0.1}^{0.5} \csc x \, dx \), giving your answer to three significant figures. (4 marks)

7 (a) Describe a sequence of two geometrical transformations that maps the graph of \(y = x^2 \) onto the graph of \(y = 4x^2 - 5 \). (4 marks)

(b) Sketch the graph of \(y = |4x^2 - 5| \), indicating the coordinates of the point where the curve crosses the \(y \)-axis. (3 marks)

(c) (i) Solve the equation \(|4x^2 - 5| = 4 \). (3 marks)

(ii) Hence, or otherwise, solve the inequality \(|4x^2 - 5| \geq 4 \). (2 marks)

8 (a) Given that \(e^{-2x} = 3 \), find the exact value of \(x \). (2 marks)

(b) Use integration by parts to find \(\int xe^{-2x} \, dx \). (4 marks)

(c) A curve has equation \(y = e^{-2x} + 6x \).

(i) Find the exact values of the coordinates of the stationary point of the curve. (4 marks)

(ii) Determine the nature of the stationary point. (2 marks)

(iii) The region \(R \) is bounded by the curve \(y = e^{-2x} + 6x \), the \(x \)-axis and the lines \(x = 0 \) and \(x = 1 \).

Find the volume of the solid formed when \(R \) is rotated through \(2\pi \) radians about the \(x \)-axis, giving your answer to three significant figures. (5 marks)

END OF QUESTIONS