Practice examination questions for surds

1.Jan 2005

5 (a) Simplify
$$(\sqrt{12}+2)(\sqrt{12}-2)$$
. (2 marks)

(b) Express
$$\sqrt{12}$$
 in the form $m\sqrt{3}$, where m is an integer. (1 mark)

(c) Express
$$\frac{\sqrt{12}+2}{\sqrt{12}-2}$$
 in the form $a+b\sqrt{3}$, where a and b are integers. (4 marks)

2.June 2005

5 Express each of the following in the form $m + n\sqrt{3}$, where m and n are integers:

(a)
$$(\sqrt{3}+1)^2$$
; (2 marks)

(b)
$$\frac{\sqrt{3}+1}{\sqrt{3}-1}$$
. (3 marks)

3.Jan 2006

1 (a) Simplify
$$(\sqrt{5} + 2)(\sqrt{5} - 2)$$
. (2 marks)
(b) Express $\sqrt{8} + \sqrt{18}$ in the form $n\sqrt{2}$, where n is an integer. (2 marks)

(b) Express
$$\sqrt{8} + \sqrt{18}$$
 in the form $n\sqrt{2}$, where *n* is an integer. (2 marks)

4.June2006

4 (a) Express
$$(4\sqrt{5}-1)(\sqrt{5}+3)$$
 in the form $p+q\sqrt{5}$, where p and q are integers. (3 marks)

(b) Show that
$$\frac{\sqrt{75} - \sqrt{27}}{\sqrt{3}}$$
 is an integer and find its value. (3 marks)

5.Jan 2007

3 (a) Express
$$\frac{\sqrt{5}+3}{\sqrt{5}-2}$$
 in the form $p\sqrt{5}+q$, where p and q are integers. (4 marks)

(b) (i) Express
$$\sqrt{45}$$
 in the form $n\sqrt{5}$, where n is an integer. (1 mark)

(ii) Solve the equation

$$x\sqrt{20} = 7\sqrt{5} - \sqrt{45}$$

giving your answer in its simplest form. (3 marks)

6.June 2007

2 (a) Express
$$\frac{\sqrt{63}}{3} + \frac{14}{\sqrt{7}}$$
 in the form $n\sqrt{7}$, where *n* is an integer. (3 marks)

(b) Express
$$\frac{\sqrt{7}+1}{\sqrt{7}-2}$$
 in the form $p\sqrt{7}+q$, where p and q are integers. (4 marks)

7.Jan 2008

3 (a) Express
$$5\sqrt{8} + \frac{6}{\sqrt{2}}$$
 in the form $n\sqrt{2}$, where *n* is an integer. (3 marks)

(b) Express
$$\frac{\sqrt{2}+2}{3\sqrt{2}-4}$$
 in the form $c\sqrt{2}+d$, where c and d are integers. (4 marks)

8.June 2008

2 It is given that $x = \sqrt{3}$ and $y = \sqrt{12}$.

Find, in the simplest form, the value of:

(a)
$$xy$$
; (1 mark)

(b)
$$\frac{y}{x}$$
; (2 marks)

(c)
$$(x+y)^2$$
. (3 marks)

3 (a) Express
$$\frac{7+\sqrt{5}}{3+\sqrt{5}}$$
 in the form $m+n\sqrt{5}$, where m and n are integers. (4 marks)

(b) Express
$$\sqrt{45} + \frac{20}{\sqrt{5}}$$
 in the form $k\sqrt{5}$, where k is an integer. (3 marks)

2 (a) Express
$$\frac{5+\sqrt{7}}{3-\sqrt{7}}$$
 in the form $m+n\sqrt{7}$, where m and n are integers. (4 marks)

(b) The diagram shows a right-angled triangle.

The hypotenuse has length $2\sqrt{5}$ cm. The other two sides have lengths $3\sqrt{2}$ cm and x cm. Find the value of x. (3 marks)

11.Jan 2010

4 (a) Show that $\frac{\sqrt{50} + \sqrt{18}}{\sqrt{8}}$ is an integer and find its value. (3 marks)

(b) Express $\frac{2\sqrt{7}-1}{2\sqrt{7}+5}$ in the form $m+n\sqrt{7}$, where m and n are integers. (4 marks)

12.June 2010

2 (a) Express $(3-\sqrt{5})^2$ in the form $m+n\sqrt{5}$, where m and n are integers. (2 marks)

(b) Hence express $\frac{\left(3-\sqrt{5}\right)^2}{1+\sqrt{5}}$ in the form $p+q\sqrt{5}$, where p and q are integers. (4 marks)

13.Jan 2011

2 (a) Simplify $(3\sqrt{3})^2$. (1 mark)

(b) Express $\frac{4\sqrt{3} + 3\sqrt{7}}{3\sqrt{3} + \sqrt{7}}$ in the form $\frac{m + \sqrt{21}}{n}$, where m and n are integers. (4 marks)

2 (a) (i) Express
$$\sqrt{48}$$
 in the form $k\sqrt{3}$, where k is an integer. (1 mark)

(ii) Simplify
$$\frac{\sqrt{48} + 2\sqrt{27}}{\sqrt{12}}$$
, giving your answer as an integer. (3 marks)

(b) Express
$$\frac{1-5\sqrt{5}}{3+\sqrt{5}}$$
 in the form $m+n\sqrt{5}$, where m and n are integers. (4 marks)

15.Jan 2012

3 (a) (i) Simplify
$$(3\sqrt{2})^2$$
. (1 mark)

(ii) Show that
$$(3\sqrt{2}-1)^2+(3+\sqrt{2})^2$$
 is an integer and find its value. (4 marks)

(b) Express
$$\frac{4\sqrt{5}-7\sqrt{2}}{2\sqrt{5}+\sqrt{2}}$$
 in the form $m-\sqrt{n}$, where m and n are integers. (4 marks)

16.June 2012

Express
$$\frac{5\sqrt{3}-6}{2\sqrt{3}+3}$$
 in the form $m+n\sqrt{3}$, where m and n are integers. (4 marks)

3 (a) (i) Express
$$\sqrt{18}$$
 in the form $k\sqrt{2}$, where k is an integer. (1 mark)

(ii) Simplify
$$\frac{\sqrt{8}}{\sqrt{18} + \sqrt{32}}$$
. (3 marks)

(b) Express
$$\frac{7\sqrt{2}-\sqrt{3}}{2\sqrt{2}-\sqrt{3}}$$
 in the form $m+\sqrt{n}$, where m and n are integers. (4 marks)

Answers

1.Jan 2005

5(a)	$\left(\sqrt{12}\right)^2 - 2^2$ attempt to multiply out $(=12-4) = 8$	M1		May have √12 terms
	(=12-4) = 8	A1	2	
(b)	$2\sqrt{3}$	В1	1	
(c)	Multiplying top and bottom by $\sqrt{12} + 2$ Numerator = $12 + 4\sqrt{12} + 4$	B1 M1		Or $\sqrt{3} + 1$ etc At least 3 terms multiplied out on top OE in $\sqrt{3}$
	Expression = $\frac{16+4\sqrt{12}}{8}$ or $\frac{16+8\sqrt{3}}{8}$	A1√	,	ft denominator from (a); or correct but numerator correct (unsimplified)
	$= 2 + \sqrt{3}$	A1	4	
	Total		7	

2.June 2005

5(a)	$3+1+2\sqrt{3}$ $=4+2\sqrt{3}$	M1 A1	2	Multiplied out At least 3 terms with $\sqrt{3}$ term $m = 4, n = 2$
(b)	Multiplying top and bottom by $\sqrt{3} + 1$ Denominator = $3 - 1 = 2$ Expression = $\frac{4 + 2\sqrt{3}}{2}$	M1 B1		
	$= 2 + \sqrt{3}$	A1	3	CSO $m = 2, n = 1$
	Total		5	

3.Jan 2006

Q	Solution	Marks	Total	Comments
1(a)	$\left(\sqrt{5}\right)^2 + 2\sqrt{5} - 2\sqrt{5} - 4 = 1$	M1		Multiplying out or difference of two squares attempted
		A1	2	Full marks for correct answer /no working
(b)	$\sqrt{8} = 2\sqrt{2}$; $\sqrt{18} = 3\sqrt{2}$ Answer = $5\sqrt{2}$	M1		Either correct
	Answer = $5\sqrt{2}$	A1	2	Full marks for correct answer /no working
	Total		4	

4.June2006

Q	Solution	Marks	Total	Comments
4(a)	$4(\sqrt{5})^{2} + 12\sqrt{5} - \sqrt{5} - 3$	M1		Multiplied out At least 3 terms with $\sqrt{5}$ term
	$4(\sqrt{5})^{2} + 12\sqrt{5} - \sqrt{5} - 3$ $4(\sqrt{5})^{2} = 4 \times 5 (=20)$ Answer = 17 + 11\sqrt{5}			At least 3 terms with \(\gamma \) term
	$4(\sqrt{5}) = 4 \times 5 (=20)$	B1		
	Answer = $17 + 11\sqrt{5}$	A1	3	
(b)	Either $\sqrt{75} = \sqrt{25}\sqrt{3}$ or $\sqrt{27} = \sqrt{9}\sqrt{3}$	M1		Or multiplying top and bottom by $\sqrt{3}$
	Either $\sqrt{75} = \sqrt{25}\sqrt{3}$ or $\sqrt{27} = \sqrt{9}\sqrt{3}$ Expression = $\frac{5\sqrt{3} - 3\sqrt{3}}{\sqrt{3}}$	A1		or $\frac{\sqrt{225} - \sqrt{81}}{3}$ or $\sqrt{25} - \sqrt{9}$ or 5–3
	= 2	A1	3	CSO
	Total		6	

5.Jan 2007

Q	Solution	Marks	Total	Comments
3(a)	$\frac{\sqrt{5}+3}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}$	M1		Multiplying top & bottom by $\pm(\sqrt{5}+2)$
	Numerator = $5 + 3\sqrt{5} + 2\sqrt{5} + 6$	M1		Multiplying out (condone one slip) $\pm (\sqrt{5+3})(\sqrt{5+2})$
	$= 5\sqrt{5} + 11$	A1		
	Final answer = $5\sqrt{5} + 11$	A1	4	With clear evidence that denominator =1
(b)(i)	$\sqrt{45} = 3\sqrt{5}$	В1	1	
(ii)	$\sqrt{20} = \sqrt{4}\sqrt{5}$ or $4\sqrt{5} = \sqrt{4} \times \sqrt{20}$ or attempt to have equation with $\sqrt{5}$ or $\sqrt{20}$ only	M1		Both sides
	$\[x \ 2\sqrt{5} = 7\sqrt{5} - 3\sqrt{5} \] \text{ or } x\sqrt{20} = 2\sqrt{20} $	A1		or $x = \sqrt{4}$
	x = 2	A1	3	cso
	Total		8	

6.June 2007

2(a)	$\frac{\sqrt{63}}{3} = \sqrt{7} \text{ or } \frac{3\sqrt{7}}{3}$	B1		or $\frac{\left(\sqrt{7}\sqrt{63} + 14 \times 3\right)}{3\sqrt{7}}$
	$\frac{14}{\sqrt{7}} = 2\sqrt{7} \text{ or } \frac{14\sqrt{7}}{7}$	B1		or $\frac{\sqrt{7}}{\sqrt{7}}$ () M1
	$\Rightarrow \text{sum} = 3\sqrt{7}$	В1	3	⇒ correct answer with all working correct A2
(b)	Multiply by $\frac{\sqrt{7}+2}{\sqrt{7}+2}$	M1		
	Denominator = $7 - 4 = 3$	A1		
	Numerator = $\left(\sqrt{7}\right)^2 + \sqrt{7} + 2\sqrt{7} + 2$	m1		multiplied out (allow one slip) $9 + 3\sqrt{7}$
	Answer = $\sqrt{7} + 3$	A1	4	
	Total		7	

Q	Solution	Marks	Total	Comments
3(a)	$5\sqrt{8} = 10\sqrt{2}$	B1		Or $\frac{5\sqrt{16}+6}{\sqrt{2}}$ gets B1
	$\frac{6}{\sqrt{2}} = \frac{6\sqrt{2}}{2} \qquad (=3\sqrt{2})$ Answer = $13\sqrt{2}$	M1		then M1 for rationalising; and A1 answer
	Answer = $13\sqrt{2}$	A1	3	n = 13
(b)	$\frac{\sqrt{2}+2}{3\sqrt{2}-4} \times \frac{3\sqrt{2}+4}{3\sqrt{2}+4}$	M1		Multiplying top & bottom by $\pm (3\sqrt{2} + 4)$
	Numerator = $6 + 6\sqrt{2} + 4\sqrt{2} + 8$	m1		Multiplying out (condone one slip)
	Denominator = 18 - 16 (= 2)	B1		
	Final answer = $5\sqrt{2} + 7$	A1	4	
	Total		7	

2(a)	xy = 6	B1	1	B0 for $\sqrt{36}$ or ± 6
(b)	$\frac{y}{x} = \frac{2\sqrt{3}}{\sqrt{3}} \text{ or } \sqrt{\frac{12}{3}} \text{ or } \sqrt{\frac{4}{1}} \text{ or } \frac{\sqrt{12}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$ $= 2$	M1 A1	2	Allow M1 for ±2
(c)	$x^2 + 2xy + y^2$ or $(\sqrt{3} + 2\sqrt{3})^2$ correct	M1		or $(\sqrt{3} + \sqrt{12})(\sqrt{3} + \sqrt{12})$ expanded as 4 terms – no more than one slip
	Correct with 2 of $x^2, y^2, 2xy$ simplified	A 1		Correct but unsimplified – one more step
	$3 + 2\sqrt{36} + 12$ or $3^2 \times 3$ or $(3\sqrt{3})^2$			
	= 27	A1	3	
	Total		6	

9.Jan 2009

3(a)	$\frac{7+\sqrt{5}}{3+\sqrt{5}} \times \frac{3-\sqrt{5}}{3-\sqrt{5}}$	M1		Multiply by $\frac{3-\sqrt{5}}{3-\sqrt{5}}$ or $\frac{\sqrt{5}-3}{\sqrt{5}-3}$
	Numerator = $21+3\sqrt{5}-7\sqrt{5}-\left(\sqrt{5}\right)^2$ Denominator = $9-5=4$	m1 B1		Condone one slip $16-4\sqrt{5}$ (Or $5-9=-4$ from other conjugate)
	$Answer = 4 - \sqrt{5}$	A1	4	cso
(b)	$\sqrt{45} = 3\sqrt{5}$	B1		
	$\frac{20}{\sqrt{5}} = \frac{20\sqrt{5}}{5}$	M1		May score if combined as one expression Must have 5 in denominator
	$Sum = 7\sqrt{5}$	A1	3	
	Total		7	

10.June 2009

2(a)	$\frac{5+\sqrt{7}}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}}$	M1		
	Numerator = $15 + 5\sqrt{7} + 3\sqrt{7} + 7$	m1		Condone one error or omission
	Denominator = $9-7 (= 2)$	B1		Must be seen as the denominator
	(Answer =) $11 + 4\sqrt{7}$	A1	4	
(b)	$(2\sqrt{5})^2 = 20 or (3\sqrt{2})^2 = 18$ their $(2\sqrt{5})^2 - (3\sqrt{2})^2$	B1		Either correct
	their $\left(2\sqrt{5}\right)^2 - \left(3\sqrt{2}\right)^2$	M1		Condone missing brackets and x ²
	$(x^2 = 20 - 18)$			$x^2 = 2 \Rightarrow B1, M1$
	$(\Rightarrow x =) \sqrt{2}$	A1	3	$\pm\sqrt{2}$ scores A0
				Answer only of 2 scores B0, M0 Answer only of $\sqrt{2}$ scores 3 marks
	Total		7	

11.Jan 2010

4(a)	$\sqrt{50} = 5\sqrt{2}$; $\sqrt{18} = 3\sqrt{2}$; $\sqrt{8} = 2\sqrt{2}$ At least two of these correct	M1		or $\times \frac{\sqrt{8}}{\sqrt{8}}$ or $\left(\times \frac{\sqrt{2}}{\sqrt{2}}\right)$ or $\sqrt{\frac{25}{4}} + \sqrt{\frac{9}{4}}$
	$\frac{5\sqrt{2}+3\sqrt{2}}{2\sqrt{2}}$	A1		any correct expression all in terms of $\sqrt{2}$ or with denominator of 8, 4 or 2 simplifying numerator eg $\frac{\sqrt{400} + \sqrt{144}}{8}$
	Answer = 4	A1	3	cso
(b)	$\frac{(2\sqrt{7}-1)(2\sqrt{7}-5)}{(2\sqrt{7}+5)(2\sqrt{7}-5)}$	M1		OE
	$numerator = 4 \times 7 - 2\sqrt{7} - 10\sqrt{7} + 5$	m1		expanding numerator
	denominator = 3	B1		(condone one error or omission) (seen as denominator)
	Answer = $11 - 4\sqrt{7}$	A1	4	
	Total		7	

12.June 2010

2(a)	$(3 - \sqrt{5})^2 = 9 - 6\sqrt{5} + (\sqrt{5})^2$ $= 14 - 6\sqrt{5}$	M1		Allow one slip in one of these terms M0 if middle term is omitted
	= 14 −6√5	A1	2	
(b)	$\frac{\left(3-\sqrt{5}\right)^2}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}}$	M1		or× $\frac{\sqrt{5}-1}{\sqrt{5}-1}$
	$14 + 6\sqrt{5}\sqrt{5} - 6\sqrt{5} - 14\sqrt{5}$ $(=44 - 20\sqrt{5})$	m1		Expanding <i>their</i> numerator (condone one error or omission)
	(Denominator) = -4	B1		Must be seen as denominator
	$(Answer) = -11 + 5\sqrt{5}$	A1	4	Accept "answer = $5\sqrt{5} - 11$ "
	Total		6	

Q	Solution	Marks	Total	Comments
2(a)	27	B1	1	
(b)	$\frac{4\sqrt{3} + 3\sqrt{7}}{3\sqrt{3} + \sqrt{7}} \times \frac{3\sqrt{3} - \sqrt{7}}{3\sqrt{3} - \sqrt{7}}$	M1		
	(Numerator =) $36 + 9\sqrt{21} - 4\sqrt{21} - 21$	m1		expanding numerator condone one slip or omission
	(Denominator =) 20	В1		must be seen as denominator
	$=\frac{3+\sqrt{21}}{4}$	A1cso	4	$m=3, n=4$ condone $\frac{3}{4} + \frac{\sqrt{21}}{4}$
	Total		5	

Q	Solution	Marks	Total	Comments
2(a)(i)	$\sqrt{48} = 4\sqrt{3}$	B1	1	condone $k = 4$ stated
(ii)	$\frac{4\sqrt{3}+6\sqrt{3}}{2\sqrt{3}}$	M1 A1		attempt to write each term in form $k\sqrt{3}$ with at least 2 terms correctly obtained correct unsimplified in terms of $\sqrt{3}$ only
	= 5	A1cso	3	must simplify fraction to 5
				Alternative 1 $\times \frac{\sqrt{12}}{\sqrt{12}} \left(or \times \frac{\sqrt{3}}{\sqrt{3}} \right)$ M1
				correct with integer terms = $\frac{24+36}{12}$ A1
				$= 5 \qquad \text{Alcso}$ Alternative 2 $\frac{\sqrt{48} + \sqrt{108}}{\sqrt{12}}$ M1
				$= \sqrt{4} + \sqrt{9} $ A1 = 5 A1cso
				Alternative 3 $\sqrt{\frac{48}{12}} + 2\sqrt{\frac{27}{12}}$ M1
				$= 2 + 2\sqrt{\frac{9}{4}} \qquad \text{A1}$ $= 5 \qquad \text{A1cso}$
				if hybrid of methods used, award M1 and most appropriate first A1
				NMS (answer =) 5 scores full marks
(b)	$\frac{1 - 5\sqrt{5}}{3 + \sqrt{5}} \times \frac{3 - \sqrt{5}}{3 - \sqrt{5}}$	M1		
	(numerator =) $3 - \sqrt{5} - 15\sqrt{5} + 25$	ml		correct unsimplified but must write $5\sqrt{5}\sqrt{5} = 25$ PI by 28 seen later
	(denominator = $9-5=$) 4 giving $\frac{28-16\sqrt{5}}{4}$	B1		must be seen as denominator
	$(answer =) 7 - 4\sqrt{5}$	A1	4	m = 7, n = -4
	Total		8	

Q	Solution	Marks	Total	Comments
3(a)(i)	$\left(3\sqrt{2}\right)^2 = 18$	В1	1	
(ii)	$(3\sqrt{2} - 1)^{2} = 'their 18' - 3\sqrt{2} - 3\sqrt{2} + 1$ $= 18 - 3\sqrt{2} - 3\sqrt{2} + 1$	M1 A1		FT their $(3\sqrt{2})^2$ $(=19-6\sqrt{2})$
	$\left(3+\sqrt{2}\right)^2 = 9+3\sqrt{2}+3\sqrt{2}+2$	В1		$\left(=11+6\sqrt{2}\right)$
	⇒ Sum = 30	Alcso	4	

(b)	$\frac{4\sqrt{5} - 7\sqrt{2}}{2\sqrt{5} + \sqrt{2}} \times \frac{2\sqrt{5} - \sqrt{2}}{2\sqrt{5} - \sqrt{2}}$	M1		
	Numerator = $8\left(\sqrt{5}\right)^2 - 4\sqrt{5}\sqrt{2} - 14\sqrt{5}\sqrt{2} + 7\left(\sqrt{2}\right)^2$	m1		correct unsimplified $\left(=54-18\sqrt{10}\right)$
	Denominator = $(2\sqrt{5})^2 - (\sqrt{2})^2$ = 18	B1		must be seen as denominator
	\Rightarrow Answer = 3 - $\sqrt{10}$	Alcso	4	
	Total		9	

Q	Solution	Marks	Total	Comments
1	$\frac{5\sqrt{3} - 6}{2\sqrt{3} + 3} \times \frac{2\sqrt{3} - 3}{2\sqrt{3} - 3}$	M1		
	(Numerator =) $30 - 15\sqrt{3} - 12\sqrt{3} + 18$	m1		$correct (= 48 - 27\sqrt{3})$
	(Denominator = $12-9 =$) 3	B1		must be seen as denominator
	$\left(\frac{48-27\sqrt{3}}{3}\right)=16-9\sqrt{3}$	A1	4	CSO; accept $16 + -9\sqrt{3}$
	Total		4	
•	· · · · · · · · · · · · · · · · · · ·			•

Q	Solution	Marks	Total	Comments
3(a)(i)	$\sqrt{18} = 3\sqrt{2}$	B1	1	Condone $k = 3$
(ii)	$\frac{2\sqrt{2}}{3\sqrt{2} + 4\sqrt{2}}$ $= \frac{2}{7}$	M1 A1 A1	3	attempt to write each term in form $n\sqrt{2}$ with at least 2 terms correct correct unsimplified
	7			or $\times \frac{\sqrt{2}}{\sqrt{2}}$ M1 integer terms = $\frac{4}{6+8}$ A1 = $\frac{2}{7}$ A1
(b)	$\frac{7\sqrt{2} - \sqrt{3}}{2\sqrt{2} - \sqrt{3}} \times \frac{2\sqrt{2} + \sqrt{3}}{2\sqrt{2} + \sqrt{3}}$	M1		
	(numerator =) $14 \times 2 - 2\sqrt{6} + 7\sqrt{6} - 3$	m1		correct unsimplified but must simplify $\left(\sqrt{2}\right)^2$, $\left(\sqrt{3}\right)^2$ and $\sqrt{2} \times \sqrt{3}$ correctly
	(denominator = 8 - 3 =) 5	В1		must be seen or identified as denominator giving $\frac{25+5\sqrt{6}}{5}$
	(Answer =) $5 + \sqrt{6}$	A1cso	4	m = 5, n = 6
	Total		8	