Surface Area

Area is a measure of *flat space* (eg desk space, wall space, space on the outside of a box).

Length is 1-dimensional	Area is 2-dimensional	Volume is 3-dimensional
Often measured in metres (m)	Often measured in square metres (m^2)	Often measured in cubic metres (m^3)
or centimetres (cm):	or square centimetres (cm ²):	or cubic centimetres (cm ³):

Common units for area include:

Square centimetres (cm^2): The face of a 5p coin has an area of about $1cm^2$.

Square metres (m^2) : The surface of a dining room table has an area of around $1m^2$.

Square kilometres (km^2) : A small village such as Cotgrave has an area of about $1km^2$.

Bonus unit: Because a square kilometre is a million times bigger than a square metre^{*}, a useful unit for things much bigger than tables but much smaller than villages (like the school site) is the **hectare** (ha) which is $10,000m^2$. 1 ha is about the size of a small field (2.5 *acres*).

Surface Area is how many squares could cover a shape:

We need to find the area of **all six faces**.

The front face has **3** rows of **4** squares: $3 \times 4 = 12cm^2$ (we include cm^2 to show the *size* of square we're using)

We also need the **back** (same as the front), the **top** and **bottom** (same as each other) and the **left** and **right** (same as each other):

Front = Back = $12cm^2$ Top = Bottom = $2 \times 4 = 8cm^2$ Left = Right = $2 \times 3 = 6cm^2$ Total Surface Area: $2 \times 12cm^2 + 2 \times 8cm^2 + 2 \times 6cm^2 = 52cm^2$

There are a few shortcuts you can use (eg add the front, top and right first, then double), but the **most important** thing is to realise surface area is the **area of all the faces together**. You can use this even for complicated shapes.

Does it matter what you call the front or top?

As long as you find the area of **every face**, it doesn't matter what you call them.

When you look at a cuboid from a different direction, or tilt it on its side or turn it upside-down, the *names* of the faces change, but the *surface area* is still the same!

Check you understand: Find the surface area of each of the cuboids shown below.

Surface Area Problems

1. Work out the surface areas of the cuboids shown. Give units with your answers.

2. The shapes below are **prisms** made from **centimetre cubes**. Find the surface area of each shape. Give units with your answers.

Extension Section

Compare the two cuboids below. Work out their **volume** and their **surface area**.

Use your answers to the question above to complete the following sentence:

The cuboid which looks most like a cube has the **smallest / largest** surface area.

Surface Area SOLUTIONS

Area is a measure of *flat space* (eg desk space, wall space, space on the outside of a box).

Length is 1-dimensional	Area is 2-dimensional	Volume is 3-dimensional
Often measured in metres (m)	Often measured in square metres (m^2)	Often measured in cubic metres (m^3)
or centimetres (cm):	or square centimetres (cm ²):	or cubic centimetres (cm ³):

Common units for area include:

Square centimetres (cm^2): The face of a 5p coin has an area of about $1cm^2$.

Square metres (m^2) : The surface of a dining room table has an area of around $1m^2$.

Square kilometres (km^2) : A small village such as Cotgrave has an area of about $1km^2$.

Bonus unit: Because a square kilometre is a million times bigger than a square metre^{*}, a useful unit for things much bigger than tables but much smaller than villages (like the school site) is the **hectare** (ha) which is $10,000m^2$. 1 ha is about the size of a small field (2.5 *acres*).

Surface Area is how many squares could cover a shape:

We need to find the area of **all six faces**.

The front face has **3** rows of **4** squares: $3 \times 4 = 12cm^2$ (we include cm^2 to show the *size* of square we're using)

We also need the **back** (same as the front), the **top** and **bottom** (same as each other) and the **left** and **right** (same as each other):

Front = Back = $12cm^2$ Top = Bottom = $2 \times 4 = 8cm^2$ Left = Right = $2 \times 3 = 6cm^2$ Total Surface Area: $2 \times 12cm^2 + 2 \times 8cm^2 + 2 \times 6cm^2 = 52cm^2$

There are a few shortcuts you can use (eg add the front, top and right first, then double), but the **most important** thing is to realise surface area is the **area of all the faces together**. You can use this even for complicated shapes.

Does it matter what you call the front or top?

As long as you find the area of **every face**, it doesn't matter what you call them.

When you look at a cuboid from a different direction, or tilt it on its side or turn it upside-down, the *names* of the faces change, but the *surface area* is still the same!

Check you understand: Find the surface area of each of the cuboids shown below.

Surface Area Problems SOLUTIONS

1. Work out the surface areas of the cuboids shown. Give units with your answers.

2. The shapes below are **prisms** made from **centimetre cubes**. Find the surface area of each shape. Give units with your answers.

Extension Section

Compare the two cuboids below. Work out their **volume** and their **surface area**.

Use your answers to the question above to complete the following sentence:

The cuboid which looks most like a cube has the **smallest / largest** surface area.

Do you think this is always true? Why?

It is always true. A long, thin or flat cuboid exposes more of its cubes, so a cube shape is the best way to minimise surface area for a fixed number of cubes. If you're allowed other shapes, however, the very best 3D shape for minimising surface area is a sphere (which is why planets are roughly spherical – they are pulled in as tightly as they can be into the most efficient shape by their own gravity. It's also why bubbles are spheres – they are trying to contain all the air with the least amount of liquid.