Slicing Shapes

A **sphere** of radius 3m is to be cut in half to increase the overall surface area.

Calculate the original surface area of the whole sphere:

Calculate the additional surface area this circular cut provides:

By what proportion has the surface area increased as a result of the cut?

A **cylinder** of radius 3m and height 4m is to be cut in half parallel to the ends.

Calculate the original surface area of the whole cylinder:

Calculate the additional surface area this circular cut provides:

By what proportion has the surface area increased as a result of the cut?

The **cylinder** (of radius 3m and height 4m) is instead cut in through the diameter.

Write down the original surface area of the whole cylinder:

Calculate the additional surface area this rectangular cut provides:

By what proportion has the surface area increased as a result of the cut?

By what proportion would the surface area be increased if you cut a cylinder in both these directions? What about cutting a sphere twice?

Slicing Shapes Extension

Volume: $\frac{1}{3}\pi r^2 h$ Surface Area: $\pi r^2 + \pi r l$ (the base is a circle of radius r, and the curved face is a sector of radius l and arc length $2\pi r$).

A **cone** of radius 3m and height 12m is to be cut vertically through the diameter.

Find the slant height and hence the original surface area of the whole cone:

Calculate the additional surface area this triangular cut provides.

By what proportion has the overall surface area increased as a result of the cut?

A **cone** of radius 3m and height 12m is to be cut horizontally, parallel to the base, a distance of $12\sqrt[3]{2}m$ from the top.

Write down the original surface area of the whole cone:

Calculate the additional surface area this circular cut provides:

Calculate the surface area of the frustum (truncated cone):

By what proportion has the overall surface area increased as a result of the cut?

By what proportion would the surface area be increased if you cut a cone in both these directions?

Slicing Shapes SOLUTIONS

By what proportion has the surface area increased as a result of the cut?

 $\frac{60\pi}{42\pi} = \frac{10}{7} \quad or \quad \approx 43\% \text{ increase}$

The **cylinder** (of radius 3m and height 4m) is instead cut in through the diameter. Write down the original surface area of the whole cylinder: $SA = 2\pi(3)^2 + 2\pi(3)(4) = 42\pi m^2$ Calculate the additional surface area this rectangular cut provides: Increased by two rectangles of width 6 and length 4, so: $2 \times 6 \times 4 = 48 m^2$ By what proportion has the surface area increased as a result of the cut? $\frac{42\pi + 48}{42\pi} = \frac{7\pi + 8}{7\pi}$ or $\approx 36\%$ increase

Note: if you cut the cylinder in **both** directions as described, the S.A. increases by S.F. $\frac{10\pi+8}{7\pi}$ or $\approx 79\%$ increase If you cut a sphere in half twice, because you are adding four circles, you double the surface area (100% increase)

Slicing Shapes Extension SOLUTIONS

A **cone** of radius 3m and height 12m is to be cut vertically through the diameter.

Find the slant height and hence the original surface area of the whole cone: $l = \sqrt{3^2 + 12^2} = 3\sqrt{17}$ so: $SA = \pi(3)^2 + \pi(3)(3\sqrt{17}) = 9\pi(1 + \sqrt{17})m^2$ Calculate the additional surface area this triangular cut provides. Base is 2 × 3 and height is 12. Two triangles give an area of 72 m^2

By what proportion has the overall surface area increased as a result of the cut?

 $\frac{9\pi(1+\sqrt{17})+72}{9\pi(1+\sqrt{17})} \quad or \quad \approx 50\% \ increase$

A **cone** of radius 3m and height 12m is to be cut horizontally, parallel to the base, so as to leave a *similar* cone of half the volume as the top piece.

Write down the original surface area of the whole cone:

$$9\pi(1+\sqrt{17})\,m^2$$

Calculate the additional surface area this circular cut provides: Given a volume scale factor of 2 from the smaller cone to the larger, the length

scale factor must be $2^{\frac{1}{3}}$ (or the cube root of 2), so the radius is $3\sqrt[3]{2}$, and the two circles we are adding have combined area:

$$2 \times \pi \left(3 \times 2^{\frac{1}{3}}\right)^2 = 9\pi \times 2^{\frac{5}{3}}$$

By what proportion has the overall surface area increased as a result of the cut?

$$\frac{\left(9\pi(1+\sqrt{17})+9\pi\times 2^{\frac{5}{3}}\right)}{9\pi(1+\sqrt{17})} \quad or \quad \approx 62\% \ increase$$

Note: if you cut the cone in half in **both** directions as described, the surface area increases by scale factor:

$$9\pi(1+\sqrt{17})+9\pi\times 2^{\frac{5}{3}}+72)$$

 $9\pi(1+\sqrt{17})$

or $\approx 112\%$ increase (more than double)

Direct comparison

Shape	r = 3m	r = 3m $h = 4m$	r = 3m h = 12m
Volume	$36\pi pprox 113m^3$	$36\pi pprox 113m^3$	$36\pi pprox 113m^3$
Surface Area	$36\pipprox 113m^2$	$42\pipprox 132m^2$	$9\piig(1+\sqrt{17}ig)pprox 145m^2$
% increase in S.A after two cuts	100%	79%	112%
New S.A.	$72\pi pprox 226m^2$	$60\pi + 48 pprox 236m^2$	$9\pi(1+\sqrt{17})$ + $9\pi imes 2^{\frac{5}{3}}+72$
			$pprox 307m^2$