Quadrilaterals

Three-sided shapes are all triangles (equilateral, isosceles or scalene). Four-sided shapes are all quadrilaterals, and many have special names.

Choose from: Arrowhead, Circle, Cube, Delta, Diamond, Hexagon, Kite, Oblong, Oval, Parallelogram, Polygon, Prism, Pyramid, Rectangle, Rhombus, Square, Triangle, Trapezium. **Extension: Can you find the area of all the shapes above? Are there any useful rules?**

Task B: Describing quadrilaterals: We want to know about **sides**, **angles** & **symmetry**. For each shape below, see how much you can say about it. One has been done for you.

Rhombus All sides equal Two pairs of parallel sides Opposite angles equal Two lines of symmetry 	

Your descriptions should be true for all shapes with this name, not just the example drawn. *Extension: Do any of these shapes have rotational symmetry? If so, what order?*

Task C: Classifying quadrilaterals

The six most common types of quadrilateral are:

Square, Rectangle, Rhombus, Parallelogram, Kite, Trapezium

By following the flow chart below for each shape, fill in the boxes with the correct name.

Extension: Make your own flow chart, using different questions or in a different order.

Task D: Is a square a rectangle?

Are your angles 90°? You're a rectangle! Are all your sides the same length? You're a rhombus! Got a pair of parallel sides? You're a trapezium!

You wouldn't normally call the shape above a rectangle, but it fits all the requirements:

- Opposite sides equal and parallel
- All angles 90°

Anything which is true for a rectangle is also true for a square (eg area is $length \times width$)

Think of the definitions as *qualifications* for different shapes. It's harder to qualify to be called a square than a rectangle (because as well as all the requirements above, you need *all* sides equal). All you need to be called a trapezium is a pair of parallel sides. If you want to graduate to being called a parallelogram you'll need the other two parallel as well.

Which of these statements do you think are true?

 "A square is always a rhombus" 	 "A trapezium is always a rhombus"
• "A rhombus is always a square"	 "A rhombus is always a trapezium"

Quadrilaterals SOLUTIONS

Three-sided shapes are all triangles (equilateral, isosceles or scalene). Four-sided shapes are all quadrilaterals, and many have special names. **Task A: Naming quadrilaterals:** Write the proper name beside each diagram below.

Arrowhead / Delta: a quadrilateral with a reflex angle Circle: a curved 2D shape Cube: the 3D equivalent of a square Diamond: non-mathematical word (a rhombus, but only a certain way round usually) Hexagon: six-sided polygon **Oblong:** sometimes means a rectangle that cannot be a square, sometimes means oval **Oval:** vague term referring to a curved shape (like an ellipse) or

Oval: vague term referring to a curved shape (like an ellipse) or a rounded rectangle

Polygon: a many-sided shape (a general term for any 2D shape with straight sides)

Prism: 3D shape with a constant cross-section (eg Toblerone) **Pyramid:** 3D shape with a 2D shaped base going to a point

Extension: Can you find the area of all the shapes above? Are there any useful rules?

Square	Rectangle	Parallelogram	Rhombus	Kite	Trapezium
9 <i>cm</i> ²	$8cm^2$	10 <i>cm</i> ²	$4cm^2$	$12 cm^{2}$	7 <i>cm</i> ²
length ²	length imes width	base imes height	base $ imes$ height	$diagonal_1 \times diagonal_2$	$(a+b)_{b}$
			Or diagonal × diagonal	2	$\frac{1}{2}$
			$uuyonul_1 \times uuyonul_2$		

Task B: Describing quadrilaterals: We want to know about **sides**, **angles** & **symmetry**. For each shape below, see how much you can say about it. One has been done for you.

Square	Rhombus	Kite
•All sides equal	 All sides equal 	 Two pairs of adjacent sides
•Two pairs of parallel sides	 Two pairs of parallel sides 	equal
 All angles equal to 90° 	 Opposite angles equal 	 One pair of opposite angles
 Four lines of symmetry 	 Two lines of symmetry 	equal
		Trapezium
Rectangle	Parallelogram	
 Two pairs of equal opposite sides 	 Two pairs of equal opposite sides 	One pair of parallel sides
•Two pairs of parallel sides	 Two pairs of parallel sides 	
 All angles equal to 90° 	 Opposite angles equal 	
 Two lines of symmetry 	 No lines of symmetry 	

Your descriptions should be true for all shapes with this name, not just the example drawn. *Extension: Do any of these shapes have rotational symmetry? If so, what order?*

Task C: Classifying quadrilaterals

The six most common types of quadrilateral are:

Square, Rectangle, Rhombus, Parallelogram, Kite, Trapezium

By following the flow chart below for each shape, fill in the boxes with the correct name.

Extension: Make your own flow chart, using different questions or in a different order.

Task D: Is a square a rectangle?

Are your angles 90°? You're a rectangle! Are all your sides the same length? You're a rhombus! Got a pair of parallel sides? You're a trapezium!

You wouldn't normally call the shape above a rectangle, but it fits all the requirements:

- Opposite sides equal and parallel
- All angles 90°

Anything which is true for a rectangle is also true for a square (eg area is $length \times width$)

Think of the definitions as *qualifications* for different shapes. It's harder to qualify to be called a square than a rectangle (because as well as all the requirements above, you need *all* sides equal). All you need to be called a trapezium is a pair of parallel sides. If you want to graduate to being called a parallelogram you'll need the other two parallel as well.

Which of these statements do you think are true?

 "A square is always a rhombus" True: it has all sides equal 	 "A trapezium is always a rhombus" False: it may not have all sides equal
 "A rhombus is always a square" False: it may not have all angles 90° 	 "A rhombus is always a trapezium" True: it has a pair of parallel sides

Extension: True or false: "If a shape is a kite and a trapezium, it must be a rhombus" For a kite to have parallel sides, they would all have to be equal, so it *would* be a rhombus.