Quadratics Overview

Terminology

Quadratic Expression	Quadratic Equation	Quadratic Graph
$ax^2 + bx + c$	$ax^2 + bx + c = 0$	$\mathbf{y} = ax^2 + bx + c$
(where <i>a</i> , <i>b</i> and <i>c</i> are numbers)	(where <i>a, b</i> and <i>c</i> are numbers)	(where <i>a</i> , <i>b</i> and <i>c</i> are numbers)
This is an expression , not an	This is an equation , but unlike a	This is a graph, which represents
equation, so by choosing	simple linear equation that	the whole range of possible
different inputs (<i>x</i> values), we	always has exactly one solution,	output values for any possible
can generate different outputs .	a quadratic equation may have	input value.
	two, one or no solutions.	For instance, the graph of the
For instance, the quadratic	For instance, the quadratic	quadratic $y = x^2 - 4$ reaches a
expression $x^2 - 4$ is equal to 21	equation $x^2 - 4 = 0$ has two	height of 21 ($y = 21$) at two
when $x = 5$.	solutions: $x = 2$ and $x = -2$.	points: $(5,21)$ and $(-5,21)$.
Eg: $1 - x^2$	Eg: $2x^2 + 4x = 0$	Eg: $y = (x - 2)(x + 4)$
$3x^2 - \frac{1}{2}x + 2$	$5 - x^2 = 3x + 2$	
(x+4)(x-1)	(7-x)(7+x) = 8	
$(2x-3)^2 + 5$	$0 = x \left(2x - \frac{1}{2} \right)$	-0

Formats

Standard	Factorised	Completed Square
$ax^2 + bx + c$	(Ax+B)(Cx+D)	$p(x+q)^2 + r$
(where <i>a</i> , <i>b</i> and <i>c</i> are numbers)	(where A, B, C and D are numbers)	(where p , q and r are numbers)
It is always possible to write a	It is sometimes possible to	It is always possible to
quadratic expression in this	factorise a quadratic expression.	complete the square with a
format.		quadratic expression.
It is useful for solving equations	It is useful for directly solving	It is useful for finding the
using the formula.	equations, or seeing where the	highest or lowest point of a
	graph would cross the <i>x</i> -axis.	quadratic curve, or for solving.
Eg: $2x^2 + 4x - 16$	Eg: $(2x-4)(x+4)$	Eg: $2(x+1)^2 - 18$

Applications

Projectiles	Economics	Rocket Science
Whenever an object falls freely under	The supply-demand principle which	The force of gravity is related to the
gravity (Eg a ball or a bullet), it follows	governs the price of products means that	distance from an object squared, so
the curved path of a quadratic (known	the less of something you have to sell, the	quadratics are used to interpret and
as a parabola) and quadratic equations	more people will pay for it. Quadratics	predict the motion of objects in space.
are used to determine maximum	allow businesses to solve the problem of	A satellite dish is also parabolic in
height, hang time, range, etc.	how much to produce to maximise profit.	shape since this focuses rays onto a
	P D1 D2 5 P2 01 02 0 01 02 0	fixed point.

As with many mathematical concepts, quadratics are only the beginning – you won't find many physicists or engineers actually solving lists of quadratic equations in their day-to-day lives, but they will often construct them when analysing a situation, program spreadsheets to find solutions or optimal points, or – more often – deal with trickier concepts that rely on a thorough grasp of quadratics to master (such as cubic equations, higher order polynomials, calculus, etc).