# **Gun-running and Numerical Methods**

For finding the roots of an equation, we can use: **Bisection** 

#### **Linear Interpolation**

#### The Newton-Raphson Method

Each subsequent method requires more information and more calculation, but generally yields better results more quickly.

They may be compared to a gun-runner trying to slip over the US-Mexico border:



## **Bisection - go halfway between the two points**

| What we need:                                           | Thanks to some careless tweeting on the                  |
|---------------------------------------------------------|----------------------------------------------------------|
| Two <i>x</i> values either side of the root, and $f(x)$ | part of our gun-runner, we know that he                  |
|                                                         | was <b>in the US at 12 noon</b> , and that <b>by 8pm</b> |
| What we calculate:                                      | he was in Mexico.                                        |
| The sign (positive/negative) of $f(x)$ for each         |                                                          |
| <i>x</i> value                                          | With no other information, our best guess                |
| The halfway point of the two <i>x</i> values            | for when he crossed the border would be the              |
|                                                         | halfway point, <b>4pm</b> .                              |

## Linear Interpolation - assume constant gradient between two points

| L                                                       | 0 1                                               |
|---------------------------------------------------------|---------------------------------------------------|
| What we need:                                           | The use of a credit card at a drive-thru tells    |
| Two <i>x</i> values either side of the root, and $f(x)$ | us our gun-runner stopped for coffee in San       |
|                                                         | Antonio, <b>200 miles north of the border</b> at  |
| What we calculate:                                      | <b>11am</b> , and was sighted in a cafe in        |
| The value of $f(x)$ for each x value                    | Monterrey, <b>100 miles south of the border</b> , |
| The equation of the straight line connecting            | at <b>5pm</b> .                                   |
| these two coordinates                                   |                                                   |
| The point at which this line crosses the <i>x</i> -     | Assuming a constant speed, our best guess         |
| axis                                                    | for when he crossed the border would be           |
|                                                         | 3pm.                                              |

### The Newton-Raphson Method - extrapolate from gradient at given point

| What we need:                                           | Our gun-runner's vehicle was sighted              |
|---------------------------------------------------------|---------------------------------------------------|
| A single x value, $f(x)$ and $f'(x)$                    | by the Feds going <b>60mph</b> on I-35, <b>25</b> |
|                                                         | miles north of the border at                      |
| What we calculate:                                      | 2:50pm.                                           |
| The values of $f(x)$ and $f'(x)$                        |                                                   |
| The equation of the straight line passing through       | Assuming his speed remains the same,              |
| (x, f(x)) with gradient $f'(x)$ .                       | our best guess for when he crossed the            |
| The point at which this line crosses the <i>x</i> -axis | border would be <b>3:15pm</b> .                   |

Note: Formulae are readily derivable for each of these methods, but it is important to become familiar with the concepts first and foremost, and learn not to depend on formulae alone for solving problems.