
The mathematics of circular motion 
In the special case of uniform circular motion, while the displacement, velocity and acceleration are constantly 
changing, the distance, speed and magnitude of acceleration are all constant (it is only the direction of the vectors 
which changes).  By examining the situation from the point of view of two-dimensional kinematics, we can find 
both the size and the direction of these vectors.  Follow this exam question to see the mathematical link between 
uniform circular motion and kinematics: (AQA Mechanics 2B, Jun ’12) 

 
Note that the position vector is given in 𝒊, 𝒋 form, with each component in terms of the time 𝑡.   
 

To prove that the particle is performing circular motion about the origin, it is sufficient to show that the 
distance from the origin is constant.  Since 𝒓 is the displacement vector, the distance is given by |𝒓|: 
 

|𝒓| = √(4 cos 3𝑡)2 + (−4 sin 3𝑡)2 = 4√cos2 3𝑡 + sin2 3𝑡 = 4 
 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡    ⟹     𝐸𝑥ℎ𝑖𝑏𝑖𝑡𝑖𝑛𝑔 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑚𝑜𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑐𝑒𝑛𝑡𝑟𝑒 𝑡ℎ𝑒  𝑜𝑟𝑖𝑔𝑖𝑛.   
 
By considering how the 𝒊 and 𝒋 components vary as 3𝑡 varies between 0 and 2𝜋, we can get an 

impression not just of position, but also of velocity.  Eg, while 0 ≤ 3𝑡 ≤
𝜋

2
 the particle is in the fourth 

quadrant – in the 𝒊 direction the position is positive but decreasing slowly, and in the 𝒋 direction the 
position is negative and decreasing rapidly.  In other words, the particle is travelling clockwise around a 

circle of radius 4 about the origin, starting from the point 4𝒊 + 0𝒋.    

 

 
 

Recall that the velocity can be found from displacement using the result 𝒗 =
𝑑𝒓

𝑑𝑡
, and when 𝒗 and 𝒓 are 

vectors, this means differentiating the 𝒊 and 𝒋 components separately, with respect to time (these 

components are perpendicular, so do not directly affect one another).   
 

𝒗 =
𝑑𝒓

𝑑𝑡
= −12 sin 3𝑡 𝒊 − 12 cos 3𝑡 𝒋 

 

By considering the components of velocity at various points, just as we did for displacement, we can get 

an idea of the velocity of the particle.  For instance, when 
𝜋

2
≤ 3𝑡 ≤ 𝜋, the particle is moving left (quickly 

at first, but with decreasing speed) and up (slowly at first, but with increasing speed).  Note also that, 
using the same method as in part a), we could use Pythagoras to show that the magnitude of velocity (the 

speed) is constant.  Therefore while direction is constantly changing, the particle is travelling at a constant 
speed.  Since the acceleration of the particle is affecting both components of velocity, it is harder to see 

how this is changing directly from this expression, but it will become clearer once we find the acceleration 
vector.  Note, however, that as the 𝒊 component of velocity increases, the 𝒋 component decreases and 

vice versa.  We should find that the acceleration of the particle is of constant magnitude even though its 
direction is constantly changing.   

 
 



 

 
Recall that the acceleration vector can be found from velocity using the result 𝒂 =

𝑑𝒗

𝑑𝑡
.   

 

𝒂 =
𝑑𝒗

𝑑𝑡
= −36 cos 3𝑡 𝒊 + 36 sin 3𝑡 𝒋 

 
Note firstly that it would be easy to show, as in part a), that acceleration is constant in magnitude (if not 
direction).  Also note the similarity of this expression to that of displacement.  The only difference is the 
signs (negative 𝒊 and positive 𝒋 in this case) and the magnitude.  So the acceleration is clearly directly 

related to the displacement of the particle.  This is a key feature of circular motion.   
 

 
 
This is a straightforward result to prove, but it is crucial to the idea of circular motion.   

 

𝒂 = −36 cos 3𝑡 𝒊 + 36 sin 3𝑡 𝒋 = −9(4 cos 3𝑡 𝒊 − 4 sin 3𝑡 𝒋) = −9𝒓 
 

Since the acceleration vector is a scalar multiple of the displacement vector, the two vectors are parallel.  
This means acceleration always acts along the same line as the displacement of the particle from the 

origin (that is, along the radius of the circular motion).   
 

 
 

𝑇𝑜𝑤𝑎𝑟𝑑𝑠 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒 (𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛) 
 
Note the negative sign – this tells us that the acceleration acts in the opposite direction to displacement.  
Displacement measures the position of the particle relative to the origin, and so it always points from the 
origin to the particle.  Therefore acceleration points from the particle to the origin.  This fits in with the 
whole concept of centripetal force and centripetal acceleration.  Since the velocity is constantly changing 
direction, the acceleration vector must be constantly changing direction, and since acceleration is always 
pointing radially (towards the centre), it cannot affect the magnitude of velocity which always points 
tangentially (at right angles to the radial direction).   
 

In general, uniform circular motion is, by definition, motion at a constant angular velocity 
(and therefore constant speed) along a path a fixed distance from a given point.   
 

At a distance 𝑟 and angular velocity 𝜔: 

𝒓 = [
𝑟 cos 𝜔𝑡
𝑟 sin 𝜔𝑡

]    ⟹     𝒗 = [
−𝜔𝑟 sin 𝜔𝑡
𝜔𝑟 cos 𝜔𝑡

]    ⟹     𝒂 = [−𝜔2𝑟 cos 𝜔𝑡
−𝜔2𝑟 sin 𝜔𝑡

] 
 

Which gives us these general results: 
Vector Displacement 𝒓 Velocity 𝒗 Acceleration 𝒂 
Magnitude 𝒓 = 𝑟 

(radius) 
𝒗 = 𝜔𝑟 

(angular speed × radius) 
𝒂 = 𝜔2𝑟 

(angular speed 2 × radius) 

Direction Radial 
(away from centre) 

Tangential 
(along a tangent) 

Radial 
(towards the centre) 

 


