Ships that pass in the night

2-D vectors & optimisation – M1 and C1

In 1845 Lord Franklin took two ships and more than 100 men on an expedition to find a Northwest Passage around the pole. HMS Erebus and HMS Terror were both equipped with state-of-the-art steam engines, allowing them to travel at 7.4 km/h.

At 0300 hours the Terror is travelling with a constant velocity of $\begin{bmatrix} -4\\ 5 \end{bmatrix}$ km/h.

The Erebus, which is 9km north and 1.5km east of the Terror, is travelling with a constant velocity of $\begin{bmatrix} -7\\1 \end{bmatrix}$ km/h.

1) Calculate the speed and direction of each vessel. Give your answers in km/h and as a 3-figure bearing correct to 1 d.p.

2) Find an expression for the position of each vessel at time *t*.

3) Find an expression for the distance between the two vessels at time *t*, and hence calculate the time when they are closest as well as their distance apart at this point.

Ships that pass in the night

2-D vectors & optimisation – M1 and C1

In 1845 Lord Franklin took two ships and more than 100 men on an expedition to find a Northwest Passage around the pole. HMS Erebus and HMS Terror were both equipped with state-of-the-art steam engines, allowing them to travel at 7.4 km/h.

At 0300 hours the Terror is travelling with a constant velocity of $\begin{bmatrix} -4\\5 \end{bmatrix}$ km/h.

The Erebus, which is 9km north and 1.5km east of the Terror, is travelling with a constant velocity of $\begin{bmatrix} -7\\1 \end{bmatrix}$ km/h.

1) Calculate the speed and direction of each vessel. Give your answers in km/h and as a 3-figure bearing correct to 1 d.p.

Terror:
$Speed = \sqrt{(-4)^2 + 5^2} = 6.40 kmh^{-1}$
$Bearing = 270 + \tan^{-1}\frac{5}{4} = 321.3^{\circ}$
Frebus:
Speed = $\sqrt{(-7)^2 + 1^2} = 7.07 kmh^{-1}$
$Bearing = 270 + \tan^{-1}\frac{1}{7} = 278.1^{\circ}$
2) Find an expression for the position of each vessel at time <i>t</i> .
Cerror:
$x_T = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -4 \\ 5 \end{bmatrix} = \begin{bmatrix} -4t \\ 5t \end{bmatrix}$
Erebus:
$x_E = \begin{bmatrix} 1.5\\9 \end{bmatrix} + t \begin{bmatrix} -7\\1 \end{bmatrix} = \begin{bmatrix} -7t+1.5\\t+9 \end{bmatrix}$
3) Find an expression for the distance between the two vessels at time <i>t</i> , and hence calculate the time
when they are closest as well as their distance apart at this point.
Displacement:
$x_T - x_E = \begin{bmatrix} 3t - 1.5\\ 4t - 9 \end{bmatrix}$
Distance:
$s = x_T - x_E = \left \begin{bmatrix} 3t - 1.5 \\ 4t - 9 \end{bmatrix} \right = \sqrt{(3t - 1.5)^2 + (4t - 9)^2}$
Closest when s is minimum:
$\sqrt{(3t-1.5)^2+(4t-9)^2}$ minimum when $(3t-1.5)^2+(4t-9)^2$ minimum
$\Rightarrow 25t^2 - 81t + 83.25 minimum$
Differentiating gives:
$50t - 81 = 0 \implies t = \frac{81}{50} = 1.62 \text{ hours} \implies time = 0.437:12$

Substituting for *s*:

$$s = \sqrt{(3(1.62) - 1.5)^2 + (4(1.62) - 9)^2} = 4.2km$$