Logarithms

A logarithm is a function which does the opposite of raising a base to your number.

Note: The opposite of x^3 is the function $\sqrt[3]{x}$, but the opposite of 3^x is the function $\log_3 x$.

Consider the formula:

$$A = b^{\chi}$$

- The number **b** is called the **base**.
- The number *x* is called the **logarithm** (which is just another word for power or index).

The function which reverses this (makes *x* the subject of the formula) is the **log function**:

$\log_b A = x$

Since log base *b* reverses raising *b* to a power, the two functions can cancel each other out:

A logarithmic function such as $y = \log_2 x$ also increases, but at an ever-decreasing rate.

Logarithms Questions

You may find these index laws useful: $a^{x}a^{y} = a^{x+y} \qquad \frac{a^{x}}{a^{y}} = a^{x-y} \qquad (a^{x})^{y} = a^{xy} \qquad a^{-x} = \frac{1}{a^{x}} \qquad a^{\frac{1}{n}} = \sqrt[n]{a}$ Recall that $\log_{5} 125 =$? means the same as $5^{?} = 125$. Example: $\log_{10} 1000 = \log_{10} 10^{3} = 3$ Answer the questions below. Two of the questions below are impossible... $\log_{4} 256 = \log_{2} \frac{1}{16} = \log_{49} 7 = \log_{9} 9 = \log_{17} 1 = \log_{\frac{1}{2}} 32 = \log_{16} 0 = \log_{2} -4 =$

Recall that $\log_n p = q$ is equivalent to $n^q = p$. Example:

$$\log_6 36 = 2 \implies 6^2 = 36$$

Rewrite the following statements in exponential form.

 $\log_{0.25} 16 = -2 \implies \log_5 0.2 = -1 \implies$

Common bases for logarithms:

Base:	Used by:	Useful because:	
10	Astronomers	Indicates the number of digits	
2	Programmers	Indicates the number of digits in binary	
<i>e</i> (≈ 2.71828)	Mathematicians	$y = e^x$ has the same gradient as y value	
$\log_{10} 1234 \approx 3.091$ (between 10^3 and 10^4 , so 4 digits)			
$\log_2 1234 \approx 10.269$ (between 2^{10} and 2^{11} , so 11 digits: 10011010010)			
$\log_e 1234 = \ln 1234 \approx 7.118 \dots (y = e^x \text{ has gradient } 1234 \text{ at } (7.118, 1234))$			

Logarithms Questions SOLUTIONS

You may find these index laws useful: $a^{x}a^{y} = a^{x+y} \qquad \frac{a^{x}}{a^{y}} = a^{x-y} \qquad (a^{x})^{y} = a^{xy} \qquad a^{-x} = \frac{1}{a^{x}} \qquad a^{\frac{1}{n}} = \sqrt[n]{a}$ Recall that $\log_{5} 125 =$? means the same as $5^{?} = 125$. Example: $\log_{10} 1000 = \log_{10} 10^{3} = 3$ Answer the questions below. Two of the questions below are impossible... $\log_{4} 256 = 4 \qquad \log_{2} \frac{1}{16} = -4 \qquad \log_{49} 7 = \frac{1}{2} \qquad \log_{9} 9 = 1$ $\log_{17} 1 = 0 \qquad \log_{\frac{1}{2}} 32 = -5 \qquad \log_{16} 0 = * \qquad \log_{2} -4 = *$

Recall that $\log_n p = q$ is equivalent to $n^q = p$. Example:

$$\log_6 36 = 2 \implies 6^2 = 36$$

Rewrite the following statements in exponential form.

 $\log_2 32 = 5 \implies 2^5 = 32$ $\log_{10} 100 = 2 \implies 10^2 = 100$ $\log_{0.25} 16 = -2 \implies 0.25^{-2} = 16$ $\log_5 0.2 = -1 \implies 5^{-1} = 0.2$

Common bases for logarithms:

Base:	Used by:	Useful because:	
10	Astronomers	Indicates the number of digits	
2	Programmers	Indicates the number of digits in binary	
<i>e</i> (≈ 2.71828)	Mathematicians	$y = e^x$ has the same gradient as y value	
$\log_{10} 1234 \approx 3.091$ (between 10^3 and 10^4 , so 4 digits)			
$\log_2 1234 \approx 10.269$ (between 2^{10} and 2^{11} , so 11 digits: 10011010010)			
$\log_e 1234 = \ln 1234 \approx 7.118 \dots (y = e^x \text{ has gradient } 1234 \text{ at } (7.118, 1234))$			