Imaginary Numbers

"Mental torture" Girolamo Cardano (1545)

Many students, when first encountering imaginary numbers will make this argument: "But imaginary numbers aren't real, so there's no point in learning about them."

True, they're not real. But why does that mean they're not worth learning about? Are fictional stories not worth reading? Is our imagination worthless? The telephone wasn't real 200 years ago, but it never would have become real without first existing as an imaginary telephone...

The catch is that no numbers are real. At least, not in the sense that beans and sausages are real:

Problem	Invention	Objection	Mathematician's answer	Applications
		"You can't have more	"What if you could? It would take	Measurement and
	Fractions	than 1 object but less	two 'halves' to make 1. It's the	proportion.
$5 \div 2 = ?$		than 2. And you can't	opposite of 'lots of'."	
	<u>a</u>	share 3 objects fairly		
	b	between 2 people."		
		"You can't have a number	"What if you could? It would be a	Place holder in place
	Zero	lower than any positive	number that wouldn't change other	value number
5 - 5 = ?		number. If you don't	numbers when you add it on or take	systems, improving
	0	have anything, how can	it off."	hugely on Egyptian
		you measure it at all?"		or Roman numerals.
		"You can't have numbers	"What if you could? It would have	Debt and borrowing,
	Negatives	smaller than 0. Even if	the opposite effect to the equivalent	height and depth,
5 - 6 = ?		'nothing' is a number,	positive number, so a -5 would	temperature.
	-a	how can you have less	cancel out a 5. We could easily	Describing both
		than that?"	extend the rules of multiplication	direction and
			and division."	magnitude.
		"You can't have a number	"What if there were numbers	Pythagoras' theorem
	Irrationals	that is impossible to make	between the infinitely dense	(surds), circle
$\sqrt{5} = ?$		though division. There	rationals? It would explain why $\sqrt{2}$	geometry (π),
	$\sqrt{2}$ π e	are an unlimited number	can never become a whole number	Fibonacci (golden
		of fractions between any	no matter what whole number you	ratio), exponential
		two numbers. Surely	multiply it by. It still gives a nice	growth, computation
		that's enough."	answer when you square it."	and approximation.
		"You can't square-root a	"What if you could? Imagine a	Geometry,
	Imaginary	negative number. Any	number that, when squared, gives	trigonometry,
$\sqrt{-5} = ?$	numbers	number I multiply by itself	-1. How would a number system	control theory,
		will yield either a positive	involving them work? Multiplying by	electromagnetism,
	i	answer or 0."	i does half the job of multiplying by	fluid dynamics,
			-1 so maybe it has something to do	quantum mechanics,
			with direction as well."	cartography,
				relativity, fractals.

Every number system we use, from the natural numbers (1, 2, 3, ...) to the integers (..., -1, 0, 1, 2, ...), the rationals (..., $\frac{1}{2}$, $\frac{-3}{4}$, $\frac{22}{7}$, ...) and the reals (..., 5, $\sqrt{2}$, $\frac{7}{9}$, e, π , $\frac{\pi}{2}$, ...) – not to mention the hyperreals or transfinites – are invented. Initially this was to solve very down-to-earth problems such as dividing land or keeping track of monetary transactions, but increasingly done just for fun, by mathematicians. Strangely enough, no matter how abstract and 'recreational' mathematics becomes, there are always physicists, computer scientists, astronomers, engineers, economists, graphic designers, etc who will find all sorts of applications for it.

To be fair, it was many years before even mathematicians were happy to use imaginary numbers (hence the derogatory name). But they got used to the idea eventually, and now, just like every other 'imaginary' number, the mathematics that develops from the use of complex numbers is used every day to find 'real' solutions to problems.