Some three-sided	But if x appears in more than one section, it is usually best to	
inequalities can be	treat the inequality as two separate simultaneous inequalities	
solved just like a	(solve each independently, then identify the range of values that	
normal two-sided	satisfy both). For instance, using the same example as on the left:	
inequality.	$-1 < 3x + 8 \le 11$	
Eg:	-1 < 3x + 8	$3x + 8 \le 11$
$-1 < 3x + 8 \le 11$	-9 < 3x	$3x \leq 3$
$-9 < 3x \le 3$	-3 < x	$x \leq 1$
$-3 < x \leq 1$	\rightarrow $-3 < x$ and $x \leq 1$ \leftarrow	
	$-3 < x \le 1$	

Note: the first method is more efficient in most cases, but the second can be used for a wider range of problems.

1. a) Find the range of values of x which satisfy: 3x - 6 < x + 4

b) Find the range of values of x which satisfy: -x < 3x - 6

c) **Hence**, write down the range of values of x which satisfy: -x < 3x - 6 < x + 4

2. Find the range of values of x which satisfy: $-x \ge x + 4 \ge 3x - 6$

3. Find the range of values of x which satisfy: $3x - 6 \le -x < x + 4$

4. Find the range of values of x which satisfy: $-x < x + 4 \le 3x - 6$

5. a) Find the range of values of x which satisfy: x + 4 < -x

b) Find the range of values of x which satisfy: -x < 3x - 6

c) **Hence**, write down the range of values of x which satisfy: x + 4 < -x < 3x - 6

Three-sided Inequalities SOLUTIONS

Consider the graphs of the straight lines: y = -x y = x + 4 y = 3x - 6There are three values of x where the lines cross one another: -2, 1.5 and 5.

Therefore there are four separate regions. In the first, the inequality from question 2 holds. In the second region, question 3 holds. In the third region, question 1 holds and in the fourth question 4 holds. Question 5 would only hold true if the line y = x + 4 was below both of the other two lines, and this is never the case.

