

<u>Canada</u>

Capital: Ottawa Population: 35,295,770 Total area: 9,970,610 km²

<u>The United States</u>

Capital: Washington, District of Columbia Population: 317,706,000 Total area: 9,629,090 km²

<u>Brazil</u>

Capital: Brasília Population: 201,032,714 Total area: 8,514,880 km²

<u>Australia</u>

Capital: Canberra Population: 23,414,552 Total area: 7,741,220 km²

Capital: Rome Population: 59,943,933 Total area: 301,318 km²

The People's Republic

of China

Capital: Beijing

Population: 1,363,350,000

Total area: 9,640,820 km²

<u>Israel</u>

Capital: Jerusalem Population: 8,146,300 Total area: 22,145 km²

Japan

Capital: Tokyo

Population: 127,180,000

Total area: 377,873 km²

Germany

Capital: Berlin

Population: 80,619,000

Total area: 357,022 km

South Korea

Capital: Seoul

Population: 50,219,669 Total area: 99,538 km²

Flag Venn Diagrams

The twelve most well-known flags in the world are shown opposite.

1. Write the **names of the countries** in the appropriate place in the Venn diagram below. *Contains Red Contains Blue*

Use the information below and your Venn diagram to answer the questions.					
R = Red	B = Blue	$R' = \operatorname{Not} R$	$B' = \operatorname{Not} B$	$R \cap B$ means	$R \cup B$ means

both R and B

either R or B

a) P(R) =

(The probability of getting a red flag)

b) P(B) =

(The probability of getting a blue flag)

c) $P(R \cap B) =$

(The probability of getting a flag which is red and blue)

d) $P(R \cup B) =$

(The probability of getting a flag which is red or blue)

e) P(R') =

(The probability of getting a flag which is not red)

f) $P(R \cap B') =$

(The probability of getting a flag which is red, but not blue)

g) $P(R' \cap B') =$

(The probability of getting a flag which is not red, but also not blue)

<u>Canada</u>

Capital: Ottawa Population: 35,295,770 Total area: 9,970,610 km²

<u>The United States</u>

Capital: Washington, District of Columbia Population: 317,706,000 Total area: 9,629,090 km²

<u>Brazil</u>

Capital: Brasília Population: 201,032,714 Total area: 8,514,880 km²

<u>Australia</u>

Capital: Canberra Population: 23,414,552 Total area: 7,741,220 km²

<u>Italy</u> Capital: Rome Population: 59,943,933 Total area: 301,318 km²

The People's Republic

of China

Capital: Beijing

Population: 1,363,350,000 Total area: 9,640,820 km²

<u>Israel</u>

Japan

Capital: Tokyo Population: 127,180,000

Total area: 377,873 km²

Germany

Capital: Berlin

Population: 80,619,000

Total area: 357,022 km

South Korea

Capital: Seoul

Population: 50,219,669 Total area: 99,538 km²

Capital: Jerusalem Population: 8,146,300 Total area: 22,145 km²

Flag Venn Diagrams SOLUTIONS

The twelve most well-known flags in the world are shown opposite.

1. Write the **names of the countries** in the appropriate place in the Venn diagram below.

2. Use the information below and your Venn diagram to answer the questions. R = Red B = Blue R' = Not R B' = Not B $R \cap B$ means $R \cup B$ means

both R and B

either R or B

n – neu

a) $P(R) = \frac{10}{12} = \frac{5}{6}$ (The probability of getting a red flag)

b) $P(B) = \frac{7}{12}$

(The probability of getting a blue flag)

c) $P(R \cap B) = \frac{5}{12}$ (The probability of getting a flag which is red and blue)

d) $P(R \cup B) = \frac{12}{12} = 1$ (The probability of getting a flag which is red or blue)

e) $P(R') = \frac{2}{12} = \frac{1}{6}$ (The probability of getting a flag which is not red)

f) $P(R \cap B') = \frac{5}{12}$ (The probability of getting a flag which is red, but not blue)

g) $P(R' \cap B') = \frac{0}{12} = 0$

(The probability of getting a flag which is not red, but also not blue)