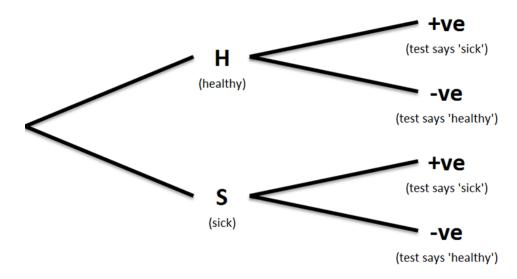
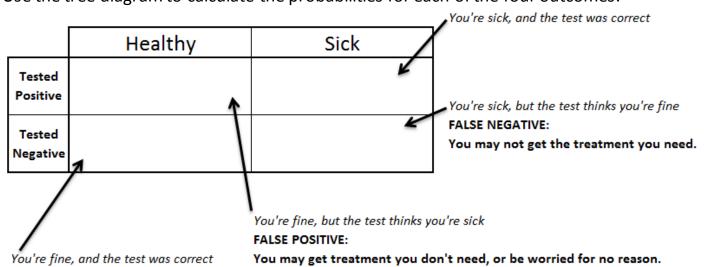
False Positive

Almost all medical tests have a small chance of a 'false positive' or a 'false negative'.

• False positive: The test says you do have the condition when you really don't.


(you're fine, but the test thinks you're sick)

- False negative: The test says you don't have the condition when you really do. (you're sick, but the test thinks you're fine)
- The test for a particular disease has a <u>false positive rate of 5%</u>.


 This means that 5% of people who **don't** have the disease will be told that they **do**.
- The test has a <u>false negative rate of 1%</u>.

This means that 1% of people who **do** have the disease will be told that they **don't**.

Assuming this particular disease affects 10% of people, complete the tree diagram below:

Use the tree diagram to calculate the probabilities for each of the four outcomes:

If the test says I'm sick, what is the chance that I really am?

Hint: I magine 1000 people take the test. Work out how many would test positive, and out of those people, how many are really sick?

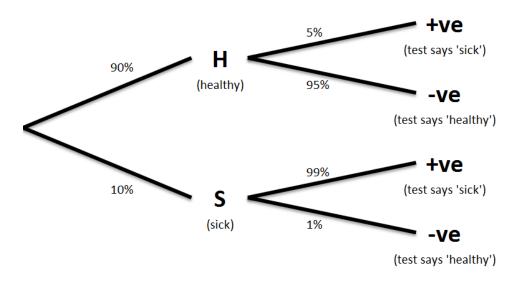
False Positive SOLUTIONS

Almost all medical tests have a small chance of a 'false positive' or a 'false negative'.

• **False positive**: The test says you **do** have the condition when you really **don't**.

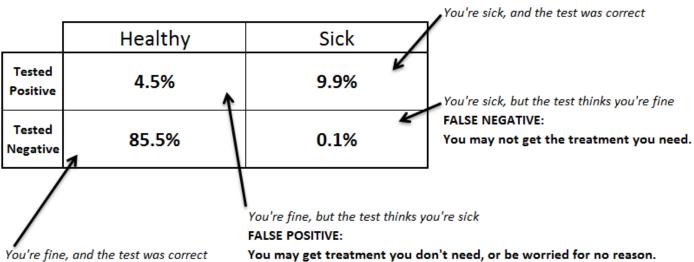
(you're fine, but the test thinks you're sick)

• **False negative**: The test says you **don't** have the condition when you really **do**.


(you're sick, but the test thinks you're fine)

- The test for a particular disease has a <u>false positive rate of 5%</u>.

 This means that 5% of people who **don't** have the disease will be told that they **do**.
- The test has a <u>false negative rate of 1%</u>.


 This means that 1% of people who **do** have the disease will be told that they **don't**.

Assuming this particular disease affects 10% of people, complete the tree diagram below:

Use the tree diagram to calculate the probabilities for each of the four outcomes:

$$0.9 \times 0.05 = \mathbf{0.045}$$
 $0.9 \times 0.95 = \mathbf{0.855}$ $0.1 \times 0.99 = \mathbf{9.9}$ $0.1 \times 0.01 = \mathbf{0.001}$

If the test says I'm sick, what is the chance that I really am?

For every 1000 people, 45 + 99 = 144 of the population will test positive. Of that 144,99 are genuinely sick.

$$\frac{99}{144} = 0.6875 = 68.75\%$$
 chance that you're really sick.