Solving Quadratics by Factorising

By **rearranging** if necessary (to make one side of the equation zero), and **factorising** (to write as two things multiplied), you can find the **two possible solutions**^{*} of a quadratic.

Example: Solve $x^2 - 7x - 30 = 0$ Two numbers that multiply to make -30 but add to make -7: Negative product means one +ve and one -ve. Negative sum means the larger one is -ve, so 3 and -10:

$$x^{2} - 7x - 30 = 0$$
$$(x + 3)(x - 10) = 0$$

Since they multiply to make 0:

$$x + 3 = 0$$
 or $x - 10 = 0$
 $x = -3$ or $x = 10$

A: Single Term Factorising	B: Double Bracket Factorising
1. $x^2 - 5x = 0$	1. $x^2 + 8x + 7 = 0$
2. $3x^2 + 4x = 0$	2. $x^2 + 12x + 11 = 0$
3. $5x^2 = 10x$	3. $x^2 + 7x + 12 = 0$
4. $7x - 6x^2 = 0$	$4. x^2 + 14x + 48 = 0$
$5.\ 2x^2 + 4x = 3x^2$	$5. x^2 + 19x + 48 = 0$
6. $x(x-3) = 2x(x+2)$	$6. x^2 + 13x + 36 = 0$
C: Harder Double Bracket Factorising	D: Disguised Double Bracket Factorising
1. $x^2 - 36 = 0$	1. $x^2 - 5x + 4 = 0$
$2. x^2 + 4x - 32 = 0$	2. $(x + 1)^2 - 5(x + 1) + 4 = 0$
$3. x^2 - 11x + 28 = 0$	3. $x^4 - 5x^2 + 4 = 0$
$4. x^2 - 9x + 14 = 0$	$4. x - 5\sqrt{x} + 4 = 0$
$5. x^2 - 3x - 10 = 0$	$5. \frac{1}{x^2} - \frac{5}{x} + 4 = 0$
$6. x^2 + 10x - 39 = 0$	6. $x - 5 + \frac{4}{x} = 0$

*The two solutions of the quadratic may not really exist (they would involve the square root of a negative) or they may be identical to each other, but even though this means you may have 0, 1 or 2 solutions you should always look for two so as to avoid missing any out.

Solving Quadratics by Factorising SOLUTIONS

By **rearranging** if necessary (to make one side of the equation zero), and **factorising** (to write as two things multiplied), you can find the **two possible solutions**^{*} of a quadratic.

Example: Solve $x^2 - 7x - 30 = 0$ Two numbers that multiply to make -30 but add to make -7:

Negative product means one +ve and one -ve. Negative sum means the larger one is –ve, so 3 and -10:

$$x^2 - 7x - 30 = 0$$
$$(x+3)(x-10) = 0$$

Since they multiply to make 0:

$$x + 3 = 0$$
 or $x - 10 = 0$
 $x = -3$ or $x = 10$

A: Single Term Factorising	B: Double Bracket Factorising
$1. x^{2} - 5x = 0$ $x(x - 5) = 0 \implies x = 0 \text{ or } x = 5$ $2. 3x^{2} + 4x = 0$ $x(3x + 4) = 0 \implies x = 0 \text{ or } x = -\frac{4}{3}$ $3. 5x^{2} = 10x \implies x^{2} = 2x \implies x^{2} - 2x = 0$ $x(x - 2) = 0 \implies x = 0 \text{ or } x = 2$ $4. 7x - 6x^{2} = 0$ $x(7 - 6x) = 0 \implies x = 0 \text{ or } x = \frac{7}{6}$ $5. 2x^{2} + 4x = 3x^{2} \implies -x^{2} + 4x = 0$ $-x(x - 4) = 0 \implies x = 0 \text{ or } x = 4$ 6. x(x - 3) = 2x(x + 2) $\implies x^{2} - 3x = 2x^{2} + 4x \implies 0 = x^{2} + 7x$ $x(x + 7) = 0 \implies x = 0 \text{ or } x = -7$	1. $x^{2} + 8x + 7 = 0$ $(x + 1)(x + 7) = 0 \Rightarrow x = -1 \text{ or } x = -7$ 2. $x^{2} + 12x + 11 = 0$ $(x + 11)(x + 1) = 0 \Rightarrow x = -11 \text{ or } x = -1$ 3. $x^{2} + 7x + 12 = 0$ $(x + 3)(x + 4) = 0 \Rightarrow x = -3 \text{ or } x = -4$ 4. $x^{2} + 14x + 48 = 0$ $(x + 6)(x + 8) = 0 \Rightarrow x = -6 \text{ or } x = -8$ 5. $x^{2} + 19x + 48 = 0$ $(x + 16)(x + 3) = 0 \Rightarrow x = -16 \text{ or } x = -3$ 6. $x^{2} + 13x + 36 = 0$ $(x + 4)(x + 9) = 0 \Rightarrow x = -4 \text{ or } x = -9$
C: Harder Double Bracket Factorising	D: Disguised Double Bracket Factorising
$1. x^{2} - 36 = 0$ $(x + 6)(x - 6) = 0 \Rightarrow x = -6 \text{ or } x = 6$ $2. x^{2} + 4x - 32 = 0$ $(x + 8)(x - 4) = 0 \Rightarrow x = -8 \text{ or } x = 4$ $3. x^{2} - 11x + 28 = 0$ $(x - 7)(x - 4) = 0 \Rightarrow x = 7 \text{ or } x = 4$ $4. x^{2} - 9x + 14 = 0$ $(x - 2)(x - 7) = 0 \Rightarrow x = 2 \text{ or } x = 7$ $5. x^{2} - 3x - 10 = 0$ $(x - 5)(x + 2) = 0 \Rightarrow x = 5 \text{ or } x = -2$ $6. x^{2} + 10x - 39 = 0$ $(x + 13)(x - 3) = 0 \Rightarrow x = -13 \text{ or } x = 3$	$1. x^{2} - 5x + 4 = 0$ $(x - 1)(x - 4) = 0 \Rightarrow x = 1 \text{ or } x = 4$ $2. (x + 1)^{2} - 5(x + 1) + 4 = 0$ ((x + 1) - 1)((x + 1) - 4) = 0 $\Rightarrow x + 1 = 1 \text{ or } x + 1 = 4 \Rightarrow x = 0 \text{ or } x = 3$ $3. x^{4} - 5x^{2} + 4 = 0$ $(x^{2} - 1)(x^{2} - 4) = 0$ $x^{2} = 1 \text{ or } x^{2} = 4 \Rightarrow x = \pm 1 \text{ or } x = \pm 2$ $4. x - 5\sqrt{x} + 4 = 0$ $(\sqrt{x} - 1)(\sqrt{x} - 4) = 0$ $\sqrt{x} = 1 \text{ or } \sqrt{x} = 4 \Rightarrow x = 1 \text{ or } x = 16$ $5. \frac{1}{x^{2}} - \frac{5}{x} + 4 = 0$ $(\frac{1}{x} - 1)(\frac{1}{x} - 4) = 0$ $\frac{1}{x} = 1 \text{ or } \frac{1}{x} = 4 \Rightarrow x = 1 \text{ or } x = \frac{1}{4}$ $6. x - 5 + \frac{4}{x} = 0$ Multiplying both sides by x gives $x^{2} - 5x + 4 = 0$ $(x - 1)(x - 4) = 0 \Rightarrow x = 1 \text{ or } x = 4$