
Euclid’s Algorithm for finding the highest common factor of two positive integers:

def hcf(a,b):

 i=0

 while a*b>0:

 if a>b:

 a,b=b,a

 b=b-a

 i=i+1

 print "a="+str(a)+",b="+str(b)+", i= "+str(i)

 print "HCF="+str(a)

The function is defined, taking two input values: a and b.

The variable i is introduced to count the number of

iterations required.

A ‘while’ loop repeats till one or other of a & b is 0

The ‘if’ statement checks which is the largest…

…and redefines (swaps a and b) if required to ensure b>a

b is now replaced by the difference b-a

This counts as one more iteration, so increase i

Print information on the current values of a, b and i

(while loop continues as long as a*b>0)

Print the highest common factor (the current value of a)

The modulus function allows you to find the remainder when one positive integer is divided by another. In Python,

this function can be called using a%b (‘a modulo b’, or ‘the remainder when a is divided by b’).

Eg: 38%5 returns 3 since
38

5
= 7

3

5
.

Can you incorporate this function to come up with a more efficient algorithm to find the highest common factor?

Hint: consider what the algorithm above does when a=100 and b=15, and how 100%15 could provide a short cut.

Solution:

Note: this improved algorithm is capable of finding the HCF of any two numbers in at most 5 times the number of

digits of the smallest of the two numbers.

