<pre>def hcf(a,b):</pre>	The function is defined, taking two input values: a and b.	
i=0	The variable i is introduced to count the number of iterations required.	
while a*b>0:	A 'while' loop repeats till one or other of a & b is 0	
if a>b:	The 'if' statement checks which is the largest	
a,b=b,a	and redefines (swaps a and b) if required to ensure b>a	
b=b-a	b is now replaced by the difference b-a	
i=i+1	This counts as one more iteration, so increase i	
<pre>print "a="+str(a)+",b="+str(b)+", i= "+str(i)</pre>	Print information on the current values of a, b and i (while loop continues as long as a*b>0)	
<pre>print "HCF="+str(a)</pre>	Print the highest common factor (the current value of a)	

Euclid's Algorithm for finding the highest common factor of two positive integers:

The modulus function allows you to find the remainder when one positive integer is divided by another. In Python, this function can be called using a%b (`a modulo b', or `the remainder when a is divided by b').

Eg: 38%5 returns 3 since $\frac{38}{5} = 7\frac{3}{5}$.

Can you incorporate this function to come up with a more efficient algorithm to find the highest common factor?

Hint: consider what the algorithm above does when a=100 and b=15, and how 100%15 could provide a short cut.

Solution:

.tssiisma	print "HCF="+str(a)	and b each time.	print "HCF="+str(a)
эцт үй рэрічір гі тгэртьі	ರ=ರಿಕಿಡ	міғр ұре діңекеисе рермеви а	p=p-a
міцу цує кешаіндек муєн цує	а,b=b,a	Replaces the largest of a and b	а, b=b, а
Replaces the largest of a and b	:d <s li<="" td=""><td></td><td>id≤a li</td></s>		id≤a li
	while a ⁺ b>0:	(miol baililqmis)	:0 <d*s slidw<="" td=""></d*s>
шүзтлорів рэчолут	def hcf2(a,b):	тата в почита почит	def hcf(a,b):

Note: this improved algorithm is capable of finding the HCF of any two numbers in at most 5 times the number of digits of the smallest of the two numbers.