Euclid’s Algorithm for finding the highest common factor of two positive integers:

def hcf(a,b):
i=0
while a*b>0:
if a>b:
a,b=b,a
b=b-a

i=i+l

print "a="+str (a)+",b="+str (b)+",

print "HCF="+str (a)

i= "+str (i)

The function is defined, taking two input values: a and b.

The variable i1 is introduced to count the number of
iterations required.
A ‘while’ loop repeats till one or other of a & b is 0

The ‘if’ statement checks which is the largest..

..and redefines (swaps a and b) if required to ensure b>a

b is now replaced by the difference b-a

This counts as one more iteration, so increase i

Print information on the current values of a, b and i
(while loop continues as long as a*b>0)
Print the highest common factor (the current value of a)

The modulus function allows you to find the remainder when one positive integer is divided by another.
this function can be called using a%b

3

. 38
Eg: 38%5 returns 3 since E<:75

(‘a modulo b’,

or

In Python,
‘the remainder when a is divided by b’).

Can you incorporate this function to come up with a more efficient algorithm to find the highest common factor?

Hint:

Solution:

consider what the algorithm

above does when a=100 and b=15,

and how 100%15 could provide a short cut.

*ASSTTRUS

syl Aq pspraAIp ST 3ssbiel

Syg3 usym IsSpurepusI Sy3 YIiIM

q puep p Jo 353037 2Yy] szorTdsy

wy3TIcHTE psAcIdul

{E'} I35+ ,=40Hu :].UTJCI

B50=q
e'g=q'e
g«<e IT

10<dsE STTUM

t(q'e) 230y I=P

"SWT3 Yyoes q pugf | (e)I3s+,=30H, IuTid

P UssMlsg S0USISIITIP SY3 Y3TM B—q=q
g purp p Jo 3sshbieT syg ssorTdsy vig=q'e
d<e IT

(o paTyTTdUTS)
wy3rIobre TRUTLIIO

10<dse STTUM
t(q’e) 3oy FoP

Note: this improved algorithm 1is

capable of finding the HCF of any two numbers in at most 5 times the number of
digits of the smallest of the two numbers.




