## Surface Area of a Cone

The surface area of a cone is given by:

$$SA = \pi r^2 + \pi r l$$

Where r is the radius of the base, and l is the slant height. l is linked to h and r by Pythagoras.



## By considering the net of a cone, prove that the area of the curved face is $\pi rl$ :



- The small circle is the base of the cone.
- The large sector curls around so the arc exactly matches the circumference of the base circle.
- The dotted lines represent the slant height, since the point where they meet is the apex of the cone.

Note: If you know the *perpendicular* height hrather than the slant height l, you can use Pythagoras to find l first:  $r^2 + h^2 = l^2$ .

| Radius of the sector:                            |  |
|--------------------------------------------------|--|
| Circumference of a full circle with this radius: |  |
| Area of a full circle with this radius:          |  |

| To match up with the base circumference,        |  |
|-------------------------------------------------|--|
| the arc length of the sector must be equal to:  |  |
| The proportion of a full circle taken up by the |  |
| sector must therefore be:                       |  |
| The area of the sector is therefore equal to:   |  |
|                                                 |  |

## Surface Area of a Cone **SOLUTIONS**

The surface area of a cone is given by:

$$SA = \pi r^2 + \pi r l$$

Where r is the radius of the base, and l is the slant height. l is linked to h and r by Pythagoras.



## By considering the net of a cone, prove that the area of the curved face is $\pi rl$ :



- The small circle is the base of the cone.
- The large sector curls around so the arc exactly matches the circumference of the base circle.
- The dotted lines represent the slant height, since the point where they meet is the apex of the cone.

Note: If you know the *perpendicular* height hrather than the slant height l, you can use Pythagoras to find l first:  $r^2 + h^2 = l^2$ .

| Radius of the sector:                            | l         |
|--------------------------------------------------|-----------|
| Circumference of a full circle with this radius: | $2\pi l$  |
| Area of a full circle with this radius:          | $\pi l^2$ |

| To match up with the base circumference,<br>the <i>arc length</i> of the sector must be equal to: | $2\pi r$                                            |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| The <i>proportion</i> of a full circle taken up by the sector must therefore be:                  | $\frac{2\pi r}{2\pi l} = \frac{r}{l}$               |
| The <b>area of the sector</b> is therefore equal to:                                              | $\frac{r}{l} \times \pi l^2 = \boldsymbol{\pi r l}$ |