Circle Facts:

- 1. Any triangle with two points on the edge of a circle and one in the middle will be isosceles.
- 2. The tangent to a circle is perpendicular to the radius at the point of contact.
- 3. The triangle produced by two tangents to a circle and the chord between them is isosceles.
- 4. If a radius bisects a chord, it does so at right angles, and if it cuts it at right angles it bisects it.

Circle Theorems:

- 1. Double Angle: The angle made at the centre of a circle is twice the angle made at the edge.
- 2. Semicircle: The angle in a semicircle is a right angle.
- 3. Segment Angles: Angles in the same segment are equal.
- 4. Cyclic Quadrilateral: Opposite angles of a cyclic quadrilateral add up to 180° .
- 5. Alternate segment: The angle between a chord and the tangent at the point of contact is equal to the angle in the alternate segment.

In the diagram, A, B, C and D are points on the circumference of a circle, centre O.
Angle $BAD = 70^{\circ}$.
Angle $BOD = x^{\circ}$.
Angle $BCD = y^{\circ}$.

(a) (i) Work out the value of x.

x = (ii) Give a reason for your answer. _____ (2) Work out the value of *y*. (b) (i) *y* = (ii) Give a reason for your answer. (2) (Total 4 marks)

(2)

٥

۰

The diagram shows a circle centre *O*. *A*, *B* and *C* are points on the circumference.

DCO is a straight line. *DA* is a tangent to the circle.

Angle $ADO = 36^{\circ}$

(ii)

(a) Work out the size of angle *AOD*.

(b) (i) Work out the size of angle *ABC*.

Give a reason for your answer.

(3) (Total 5 marks)

(2)

R and *S* are two points on a circle, centre *O*. *TS* is a tangent to the circle. Angle RST = x.

Prove that angle ROS = 2x. You must give reasons for each stage of your working.

(Total 4 marks)

B and *C* are points on a circle, centre *O*. *AB* and *AC* are tangents to the circle. Angle $BOC = 130^{\circ}$.

Work out the size of angle *BAO*.

• (Total 3 marks)

(2) (Total 4 marks)

(2)

Diagram NOT accurately drawn

A and B are points on a circle, centre O, radius 3 cm.

PA and *PB* are tangents to the circle.

PA = 5 cm.

(a) Write down the size of the angle *OBP*.

(b) (i) Write down the length of *PB*.

..... cm

•

(ii) Give a reason for your answer.

.....

(2) (Total 3 marks)

(1)

The diagram shows a circle, centre O. *A*, *S*, *B* and *T* are points on the circumference of the circle.

PT and *PS* are tangents to the circle. *AB* is parallel to *TP*.

Angle $SPT = 44^{\circ}$.

Work out the size of angle SOB.

.....° (Total 4 marks)

A and B are points on the circumference of a circle, centre O. PA and PB are tangents to the circle. Angle APB is 86°.

Work out the size of the angle marked *x*.

.....° (Total 2 marks)

In the diagram, *A*, *B* and *C* are points on the circumference of a circle, centre *O*. Angle $ABC = 85^{\circ}$.

(i) Work out the size of the angle marked x° .

(ii) Give a reason for your answer.

(Total 2 marks)

٥

Circle Theorem Hints	Circle Theorem Answers
Question 1	$x = 140^{\circ}$ because the angle made at the centre of
You will need circle theorems 1 and 4.	a circle is twice the angle made at the edge.
	$y = 110^{\circ}$ because opposite angles of a cyclic
	guadrilateral add up to 180°.
Question 2	$ABC = 90^{\circ}$ because the angle in a semicircle is a
You will need circle theorems 2 and 1.	right angle.
	$DEF = 65^{\circ}$ because the angle made at the centre
	of a circle is twice the angle made at the edge.
Question 3	$AOD = 54^{\circ}$ because $DAO = 90^{\circ}$.
You will need circle fact 2 and circle theorem 1.	$ABC = 27^{\circ}$ because the angle made at the centre
	of a circle is twice the angle made at the edge.
Question 4	$TSO = 90^{\circ}$ because the tangent to a circle is
You will need circle facts 2 and 1.	perpendicular to the radius at the point of contact.
	Therefore angle $OSR = 90 - x$.
	Triangle SOR is isosceles since SO and OR are
	both the radius of the circle, therefore $ORS = 90 -$
	x and $ROS = 180 - (180 - 2x) = 2x$.
Question 5	Angle $ABO = 90^{\circ}$ because AB is a tangent and
You will need circle facts 2 and 3.	<i>BO</i> is a radius. Similarly, $ACO = 90^{\circ}$.
	The angles in the guadrilateral ABOC must add up
	to 180° , so since $BOC = 130^{\circ}$, $BAC = 50^{\circ}$.
	Triangle ABC is isosceles, and triangle BOC is
	isosceles. Since they are both symmetrical about
	AO, the line AO bisects the angle BAO .
	Therefore $BAO = 25^{\circ}$.
Question 6	Triangle BOC is isosceles since BO and CO are
You will need circle facts 2 and 3.	both the radius of the circle. Therefore $OCB =$
	15° and $BOC = 180 - 2(15) = 150^{\circ}$. Since
	$ABO = 90^{\circ}$ and $ACO = 90^{\circ}$ (as AB and AC are
	tangents and BO and CO radii), the fourth angle
	in the quadrilateral $ABOC$ - the angle x - must
	add to 150° , 90° and 90° to make 360° ,
	therefore $x = 30^{\circ}$.
Question 7	$OBP = 90^{\circ}$ because <i>PB</i> is a tangent to the circle
You will need circle facts 2 and 3	at B , and BO is a radius.
	PB = 5cm because triangle PBA is isosceles,
	therefore $PB = PA$.
Question 8	Angle $PTO = 90^{\circ}$, angle $PSO = 90^{\circ}$ and angle
You will need circle fact 2.	$TPS = 44^{\circ}$. The fourth angle in the quadrilateral
	<i>TPSO</i> must therefore be $TOS = 136^{\circ}$. Angle
	$TOB = 90^{\circ}$ because line <i>BA</i> is parallel to line <i>PT</i>
	and interior angles on parallel lines add up to 180° .
	Therefore $SOB = 136 - 90 = 46^{\circ}$.
Question 9	Since OAP and OBP are 90° (AP and BP are
You will need circle facts 2 and 3.	tangents to the circle, and OA and OB are radii),
	$AOB = 180 - 86 = 94^{\circ}.$
	Triangle AOB is isosceles, so $x = \frac{180-94}{2} = 43^{\circ}$.
Question 10	$x = 170^{\circ}$ because the angle made at the centre of
You will need circle theorem 1.	a circle is twice the angle made at the edge.