Algorithms from Decision 1

Algorithm	Purpose	Summary	Examples
Kruskal's	To find a minimum	Select edges in order of lowest	Laying cable for an electricity,
algorithm	spanning tree for a	weighting.	phone or internet connection.
	network.		
Prim's	To find a minimum	Connect vertices by adding the	Laying cable for an electricity,
algorithm	spanning tree for a	lowest weighted edge each time.	phone or internet connection.
	network.		
Dijkstra's	To find the shortest	Use successive labelling to find	Route planning (eg Sat Nav),
algorithm	path through a	the shortest path to each vertex.	Internet traffic routing.
	network.		
Chinese postman	To find the shortest	Eliminate odd vertices by adding	Postman delivering to every
algorithm	path which traverses	new edges, then find an Eulerian	house along every road, bin-
	every edge of a	trail traversing the new network.	men's route planning, sight-
N N N	network.		seeing.
Nearest-neighbour	To find an upper	Beginning at a chosen vertex,	A travelling salesman, a delivery
algorithm	bound for the shortest	choose the shortest edge each	van which needs to make
	path which links every	time until all vertices have been	multiple stops.
Lawar haved	Te find a lawer bound	Visited.	A travelling colormon, o doliveny
Lower bound	for the chartest path	odges and find a minimum	A travelling salesman, a delivery
algorithm	which links over	snapping tree for the remaining	multiple stops
	vertex of a network	graph	multiple stops.
Alternating nath	To find a maximal	Beginning with an unconnected	Speed dating making
algorithm	matching between	vertex connect it deleting edges	arrangements for seating plans
algorithm	two sets	and connecting vertices from	at a wedding matching un
	two sets.	alternate sides	workers with jobs or companies
			with clients.
Bubble sort	To order an unordered	Compare, and, if needed, swap	Computerised ordering of lists
algorithm	list.	successive pairs of items. Repeat	(of numbers or other data), for
-		until done.	example to facilitate rapid data
			look up.
Shuttle sort	To order an unordered	Compare first two items, and	Computerised ordering of lists
algorithm	list.	swap if needed. Introduce the	(of numbers or other data), for
		next item, and insert it into the	example to facilitate rapid data
		list where needed. Repeat.	look up.
Shell sort	To order an unordered	Split the data into sublists, shuttle	Computerised ordering of lists
algorithm	list.	sort each separately, then	(of numbers or other data), for
		combine sublists and repeat.	example to facilitate rapid data
			look up.
Quick sort	To order an unordered	Select a pivot item and compare	Computerised ordering of lists
algorithm	list.	each subsequent item to it,	(of numbers or other data), for
		creating sublists to either side.	example to facilitate rapid data
		Repeat with each sublist.	look up.

Algorithm etiquette:

A well-formulated algorithm will have the following properties:

- Finite number of instructions
- Precisely defined stages
- Precise instructions
- Answer must depend only on the input variables
- Algorithms must work (produce a result) for any valid input

When presented as a flow chart:

- Oval boxes are for starting and stopping, and for inputting and outputting data.
- Square boxes are for calculations or instructions.
- Diamond boxes are for decisions.