
Algorithms from Decision 1

Algorithm Purpose Summary Examples

Kruskal’s
algorithm

To find a minimum
spanning tree for a
network.

Select edges in order of lowest
weighting.

Laying cable for an electricity,
phone or internet connection.

Prim’s
algorithm

To find a minimum
spanning tree for a
network.

Connect vertices by adding the
lowest weighted edge each time.

Laying cable for an electricity,
phone or internet connection.

Dijkstra’s
algorithm

To find the shortest
path through a
network.

Use successive labelling to find
the shortest path to each vertex.

Route planning (eg Sat Nav),
Internet traffic routing.

Chinese postman
algorithm

To find the shortest
path which traverses
every edge of a
network.

Eliminate odd vertices by adding
new edges, then find an Eulerian
trail traversing the new network.

Postman delivering to every
house along every road, bin-
men’s route planning, sight-
seeing.

Nearest-neighbour
algorithm

To find an upper
bound for the shortest
path which links every
vertex of a network.

Beginning at a chosen vertex,
choose the shortest edge each
time until all vertices have been
visited.

A travelling salesman, a delivery
van which needs to make
multiple stops.

Lower bound
algorithm

To find a lower bound
for the shortest path
which links every
vertex of a network.

Delete a vertex and connected
edges, and find a minimum
spanning tree for the remaining
graph

A travelling salesman, a delivery
van which needs to make
multiple stops.

Alternating path
algorithm

To find a maximal
matching between
two sets.

Beginning with an unconnected
vertex, connect it, deleting edges
and connecting vertices from
alternate sides.

Speed dating, making
arrangements for seating plans
at a wedding, matching up
workers with jobs or companies
with clients.

Bubble sort
algorithm

To order an unordered
list.

Compare, and, if needed, swap
successive pairs of items. Repeat
until done.

Computerised ordering of lists
(of numbers or other data), for
example to facilitate rapid data
look up.

Shuttle sort
algorithm

To order an unordered
list.

Compare first two items, and
swap if needed. Introduce the
next item, and insert it into the
list where needed. Repeat.

Computerised ordering of lists
(of numbers or other data), for
example to facilitate rapid data
look up.

Shell sort
algorithm

To order an unordered
list.

Split the data into sublists, shuttle
sort each separately, then
combine sublists and repeat.

Computerised ordering of lists
(of numbers or other data), for
example to facilitate rapid data
look up.

Quick sort
algorithm

To order an unordered
list.

Select a pivot item and compare
each subsequent item to it,
creating sublists to either side.
Repeat with each sublist.

Computerised ordering of lists
(of numbers or other data), for
example to facilitate rapid data
look up.

Algorithm etiquette:

A well-formulated algorithm will have the following properties:

 Finite number of instructions

 Precisely defined stages

 Precise instructions

 Answer must depend only on the input variables

 Algorithms must work (produce a result) for any valid input

 When presented as a flow chart:

 Oval boxes are for starting and stopping,
and for inputting and outputting data.

 Square boxes are for calculations or
instructions.

 Diamond boxes are for decisions.

