Algebraic Fractions

Section A: Simplifying algebraic fractions

A numerical fraction is simplified by dividing the numerator and denominator both by their highest common factor (HCF).

Eg:

$$\frac{48}{60} = \frac{12 \times 4}{12 \times 5} = \frac{4}{5}$$

(÷ numerator and denominator by 12)

The process is identical for an algebraic fraction, only the HCF can be an expression rather than just a number.

Eg:

$$\frac{4x + 6x^2}{18x^3} = \frac{2x(2+3x)}{2x(9x^2)} = \frac{2+3x}{9x^2}$$

 $(\div$ numerator and denominator by 2x)

Note: to be certain of finding the highest common factor, you must first factorise fully.

1.	12 <i>x</i>	2.	$2x^7$
	$\frac{1}{40x} =$		$\frac{2x^7}{x^8} =$
3.	$\frac{4(x-3)}{-}$	4.	(x+2)(x-5)
	$\frac{1}{6(x-3)}$		$\frac{(x-5)(x+5)}{(x-5)(x+5)} =$
5.	$13x^2 - 5x$	6.	$5x^2 - 10x$
	$\frac{1}{4x+6x^3}$		$\frac{1}{x^2 - 6x + 8} \equiv$
7.	$x^2 + 5x + 4$	8.	$2x^2 + 2x - 12$
	$\frac{1}{x^2 - 16} =$		$\frac{1}{4x^2 - 16} =$

Section B: Adding and subtracting algebraic fractions

Convert both to fractions with the same denominator (usually the lowest common multiple (LCM) of each. Then add or subtract the numerators.

Eg:

$$\frac{17}{18} + \frac{4}{27} = \frac{51}{54} + \frac{8}{54} = \frac{59}{54}$$
(LCM of denominators is 54)

The process is identical for an algebraic fraction, only the LCM can be an expression rather than just a number.

Eg:

$$\frac{x}{x+3} + \frac{2}{x} = \frac{x^2}{x(x+3)} + \frac{2(x+3)}{x(x+3)}$$
$$= \frac{x^2 + 2x + 6}{x(x+3)}$$

(LCM of denominators is x(x + 3))

Note: as with numerical fractions you should check if the fraction **simplifies** at the end.

1.	$\frac{5}{x} + \frac{9}{2x} =$	2.	$\frac{6x}{x+1} + \frac{7}{x+1} =$
3.	$\frac{4x}{2x-1} - \frac{2}{2x-1} =$	4.	$\frac{4}{x} - \frac{3}{y} =$
5.	$\frac{3}{x+1} + \frac{5}{(x+1)(x-5)} =$	6.	$\frac{2}{x^2 - 9} + \frac{3}{x - 3} =$
7.	$\frac{a}{b} - \frac{c}{d} =$	8.	$\frac{p}{q^2r} + \frac{r}{3rq} =$

Section C: Multiplying and dividing algebraic fractions

A numerical fraction is multiplied by simply multiplying the numerators and multiplying the denominators.

Eg:

$$\frac{10}{11} \times \frac{4}{5} = \frac{40}{55} = \frac{8}{11}$$

To divide a numerical fraction by something, multiply by its reciprocal (flip the fraction you want to divide by).

Eg:

$$\frac{10}{11} \div \frac{4}{5} = \frac{10}{11} \times \frac{5}{4} = \frac{50}{44} = \frac{25}{22}$$
(flip the second fraction and multiply)

The process is identical for an algebraic fraction. Often it is easier since multiplying expressions simply involves writing them next to one another.

Eg:

$$\frac{12x}{x+2} \times \frac{x-1}{x^2} = \frac{12x(x-1)}{x^2(x+2)} = \frac{12(x-1)}{x(x+2)}$$

To divide an algebraic fraction, flip and multiply just like numerical fractions:

Eg:

$$\frac{12x}{x+2} \div \frac{x-1}{x^2} = \frac{12x}{x+2} \times \frac{x^2}{x-1}$$
$$= \frac{12x^3}{(x+2)(x-1)}$$

Note:

1.
$$\frac{3}{x} \times \frac{2}{x} =$$
2.
$$\frac{x}{4} \times \frac{12}{x} =$$
3.
$$\frac{9}{x-1} \times \frac{x}{x-1} =$$
4.
$$\frac{2x}{2x+1} \times \frac{x+1}{x} =$$
5.
$$\frac{(x+1)^2}{4x} \div \frac{x-4}{2x} =$$
6.
$$\frac{1-y}{x+2} \div \frac{2-x}{y+1} =$$
7.
$$\frac{x^2+3x+2}{x+3} \times \frac{x^2-9}{x+1}$$
8.
$$\frac{abc}{def} \div \frac{a^2b^2c^2}{d^2e^2f^2} =$$

Algebraic Fractions SOLUTIONS

Section A: Simplifying algebraic fractions

1.	12 <i>x</i>	3	2.	$2x^{7}$	2
	$\frac{1}{40x} =$	10		$\frac{1}{x^8} =$	$\frac{\overline{x}}{x}$
3.	4(x-3)	2	4.	(x+2)(x-5)	x + 2
	$\frac{1}{6(x-3)}$	$\overline{3}$		${(x-5)(x+5)} =$	$\overline{x+5}$
5.	$13x^2 - 5x$	13x - 5	6.	$5x^2 - 10x$	5
	$\frac{1}{4x+6x^3} =$	$\overline{2(2+3x)}$		${x^2-6x+8} =$	$\overline{x-4}$
7.	$x^2 + 5x + 4$	x + 1	8.	$2x^2 + 2x - 12$	2(x-2)
	$-{x^2-16}$	$\overline{x-4}$		$\frac{1}{4x^2-16}$	$\overline{4(x+2)}$

Section B: Adding and subtracting algebraic fractions

	9	0 - 0			
1.	5 9	19	2.	6 <i>x</i> 7	6x + 7
	$\frac{1}{x} + \frac{1}{2x} =$	$\overline{2x}$		$\frac{1}{x+1} + \frac{1}{x+1} =$	$\overline{x+1}$
3.	4x 2	2	4.	$\frac{4}{2} - \frac{3}{2} -$	4y-3x
	$\frac{2x-1}{2x-1} - \frac{2x-1}{2x} =$	4		$\frac{1}{x} - \frac{1}{y} =$	xy
5.	3 5	3x - 10	6.	2 3	3x + 11
	$\overline{x+1}$ + $\overline{(x+1)(x-5)}$	$\overline{(x+1)(x-5)}$		$\frac{1}{x^2-9} + \frac{1}{x-3}$	$\overline{(x+3)(x-3)}$
7.	a c _	ad-cb	8.	<u>p</u> _ r	3p + qr
	$\frac{\overline{b}}{b} - \frac{\overline{d}}{d}$	<u>bd</u>		$\frac{1}{q^2r} + \frac{1}{3rq}$	$\overline{3q^2r}$

Section C: Multiplying and dividing algebraic fractions

1.	$\frac{3}{x} \times \frac{2}{x} =$	$\frac{6}{x^2}$	2.	$\frac{x}{4} \times \frac{12}{x} =$	3
3.	$\frac{9}{x-1} \times \frac{x}{x-1} =$	$\frac{9x}{x-1}$	4.	$\frac{2x}{2x+1} \times \frac{x+1}{x} =$	$\frac{2(x+1)}{2x+1}$
5.	$\frac{(x+1)^2}{4x} \div \frac{x-4}{2x} =$	$\frac{(x+1)^2}{2(x-4)}$	6.	$\frac{1-y}{x+2} \div \frac{2-x}{y+1} =$	$\frac{(1-y)(y+1)}{(x+2)(2-x)}$
7.	$\frac{x^2 + 3x + 2}{x + 3} \times \frac{x^2 - 9}{x + 1}$	(x+2)(x-3)	8.	$\frac{abc}{def} \div \frac{a^2b^2c^2}{d^2e^2f^2} =$	def abc