Warwick castle boasts the world's largest working trebuchet. Standing at 18 m high, and weighing 22 tonnes, it is capable of firing a projectile of mass 150 kg a horizontal distance of up to 300 m at a top speed of $70 \mathrm{~m} / \mathrm{s}$. The projectile can be assumed to be launched from ground level.
1.

Assume the angle of launch is altered to 45°.
a) If the top speed stayed the same, what would the range become?
b) If the range stayed the same, what would the top speed become?
2.

Given the top speed and the horizontal range, at what angle does the trebuchet actually launch its projectile? You may find the identity $\sin 2 \theta=2 \sin \theta \cos \theta$ useful.

Trebuchet Projectiles

Warwick castle boasts the world's largest working trebuchet. Standing at 18 m high, and weighing 22 tonnes, it is capable of firing a projectile of mass 150 kg a horizontal distance of up to 300 m at a top speed of $70 \mathrm{~m} / \mathrm{s}$. The projectile can be assumed to be launched from ground level.
1.

Assume the angle of launch is altered to 45°.
a) If the top speed stayed the same, what would the range become?
b) If the range stayed the same, what would the top speed become?
2.

Given the top speed and the horizontal range, at what angle does the trebuchet actually launch its projectile? You may find the identity $\sin 2 \theta=2 \sin \theta \cos \theta$ useful.

Trebuchet Projectiles SOLUTIONS

Warwick castle boasts the world's largest working trebuchet. Standing at 18 m high, and weighing 22 tonnes, it is capable of firing a projectile of mass 150 kg a horizontal distance of up to 300 m at a top speed of $70 \mathrm{~m} / \mathrm{s}$.
1.

Assume the angle of launch is altered to 45°.

a) If the top speed stayed the same, what would the range become?

Vertical motion:
$s=0$
$u=70 \sin 45$
$v=-$
$a=-9.8$
$t=t$
$s=u t+\frac{1}{2} a t^{2}$
$\Rightarrow \quad 0=70 t \sin 45-4.9 t^{2}$
$\Rightarrow t(70 \sin 45-4.9 t)=0$
$\Rightarrow \quad t=0$ or $t=\frac{70 \sin 45}{4.9}$
From problem context: $t=\frac{70 \sin 45}{4.9}$
b) If the range stayed the same, what would the top speed become?

Horizontal motion:
Vertical motion:
$v=V \cos 45$
$s=0$
$x=300$
$t=t$
$v=\frac{x}{t}$
$u=V \sin 45$
$v=-$
$a=-9.8$
$t=\frac{300}{V \cos 45}$
$\Rightarrow \quad V \cos 45=\frac{300}{t}$
$\Rightarrow \quad t=\frac{300}{V \cos 45}$
$s=u t+\frac{1}{2} a t^{2}$
$\Rightarrow 0=V \sin 45\left(\frac{300}{V \cos 45}\right)-4.9\left(\frac{300}{V \cos 45}\right)^{2}$
$\Rightarrow 300 \tan 45=\frac{441000}{V^{2} \cos ^{2} 45}$
$\Rightarrow \quad V^{2}=\frac{882000}{300}=2940$
$\Rightarrow \quad V=54.2 \mathrm{~ms}^{-1}$ to 3 s.f.
2.

Given the top speed and the horizontal range, at what angle does the trebuchet actually launch its projectile? You may find the identity $\sin 2 \theta=2 \sin \theta \cos \theta$ useful.

Horizontal motion:
$v=70 \cos \theta$
$x=300$
$t=t$
$v=\frac{x}{t}$
$\Rightarrow 70 \cos \theta=\frac{300}{t}$
$\Rightarrow t=\frac{300}{70 \cos \theta}$

Vertical motion:
$s=0$
$u=70 \sin \theta$
$v=-$
$a=-9.8$
$t=t$
$s=u t+\frac{1}{2} a t^{2}$
$\Rightarrow 0=70 t \sin \theta-4.9 t^{2}$
$\Rightarrow 70\left(\frac{300}{70 \cos \theta}\right) \sin \theta=4.9\left(\frac{300}{70 \cos \theta}\right)^{2}$
$\Longrightarrow 300 \sin \theta=\frac{90}{\cos \theta}$
$\Rightarrow 10 \sin \theta \cos \theta=3$
$\Rightarrow 5 \sin 2 \theta=3$
$\Rightarrow \sin 2 \theta=0.6$
$\Rightarrow 2 \theta=\sin ^{-1} 0.6=36.87^{\circ}$ or 143.13°
$\Rightarrow \quad \theta=18.4^{\circ}$ or 71.6°
From problem context: $\boldsymbol{\theta}=71.6^{\circ}$ to 3 s.f.

