Finding Pythagorean Triples

Pythagoras’ Theorem:
\[a^2 + b^2 = c^2 \]

A set of three integers which satisfy the theorem. A triangle with these side lengths would be right-angled. Eg: 3, 4, 5
\[a^2 + b^2 = c^2 \]
\[3^2 + 4^2 = 5^2 \]

To generate a Pythagorean triple:
Using any whole number more than 1 for \(m \), substitute into these formulae:

\[a = m^2 - 1 \quad b = 2m \quad c = m^2 + 1 \]
Where \(m \) is an integer (a whole number) greater than 1

Eg: \(m = 4 \) \[\Rightarrow \]
\[a = 4^2 - 1 = 15 \quad b = 2(4) = 8 \quad c = 4^2 + 1 = 17 \]
Pythagorean triple: 8, 15, 17. \[\text{Check: } 8^2 + 15^2 = 64 + 225 = 289 = 17^2 \]

1. Use the formulae above to generate some of your own triples.

A primitive triple is one where the three numbers have no common factors (called ‘coprime’). Eg, 60, 80, 100 is not primitive – it is \(20 \times \) the 3, 4, 5 triple.

2. What values of \(m \) produce primitive triples?

The formulae above will generate an infinite number of primitive triples, but not all possible triples. To do this it is necessary to extend it a little:

\[a = m^2 - n^2 \quad b = 2mn \quad c = m^2 + n^2 \]
where \(m \) and \(n \) are both positive integers

Eg: \(m = 5 \quad n = 2: \)
\[a = 5^2 - 2^2 = 21 \quad b = 2(5)(2) = 20 \quad c = 5^2 + 2^2 = 29 \]

3. Investigate different values for \(m \) and \(n \). Can you identify the conditions for generating primitive Pythagorean triples?
Finding Pythagorean Triples - SOLUTIONS

Pythagoras’ Theorem:

\[a^2 + b^2 = c^2 \]

Pythagorean triple:
A set of three integers which satisfy the theorem.
A triangle with these side lengths would be right-angled.
Eg: 3, 4, 5

\[a^2 + b^2 = c^2 \]
\[3^2 + 4^2 = 5^2 \]

\[a = m^2 - 1 \quad b = 2m \quad c = m^2 + 1 \]
Where \(m \) is an integer (a whole number) greater than 1

1. Use the formulae above to generate some of your own triples.

<table>
<thead>
<tr>
<th>(m)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b, c)</td>
<td>3, 4, 5</td>
<td>8, 6, 10</td>
<td>15, 8, 17</td>
<td>24, 10, 26</td>
<td>35, 12, 37</td>
<td>48, 14, 50</td>
</tr>
</tbody>
</table>

2. What values of \(m \) generate primitive triples?

Even values of \(m \) generate primitive triples. \(m^2 + 1 \) and \(m^2 - 1 \) would be odd, and \(2m \) would be even. Since \(m^2 - 1 \) and \(m^2 + 1 \) are exactly 2 apart, the only way they can share factors is if the factor is 2, but if they are both odd, all three numbers must be coprime.

\[a = m^2 - n^2 \quad b = 2mn \quad c = m^2 + n^2 \]
where \(m \) and \(n \) are both positive integers

3. Investigate different values for \(m \) and \(n \). Can you identify the conditions for generating primitive Pythagorean triples?

<table>
<thead>
<tr>
<th>(n)</th>
<th>(m)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3, 4, 5</td>
<td>8, 6, 10</td>
<td>15, 8, 17</td>
<td>24, 10, 26</td>
<td>35, 12, 37</td>
<td>48, 14, 50</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5, 12, 13</td>
<td>12, 16, 20</td>
<td>21, 20, 29</td>
<td>32, 24, 40</td>
<td>45, 28, 53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7, 24, 25</td>
<td>16, 30, 34</td>
<td>27, 36, 45</td>
<td>40, 42, 58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>9, 40, 41</td>
<td>20, 48, 52</td>
<td>33, 56, 65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>11, 60, 61</td>
<td>24, 70, 74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>13, 84, 85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primitives occur when both: exactly one of \(m \) and \(n \) are even and when they are coprime