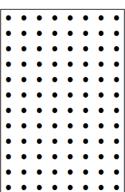
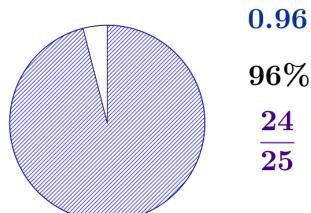

Number of the Week

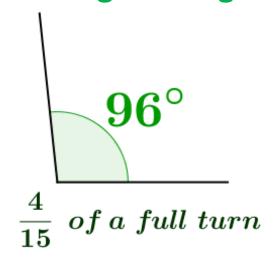
01100000


96

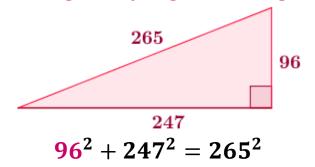
XCVI



12 Factors


8×12

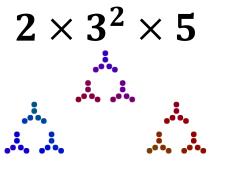
As a fraction of 100:


As an angle in degrees:

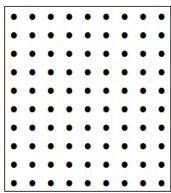
$$96^2 = 9216$$

$$\sqrt{96} = 4\sqrt{6} \approx 9.798$$

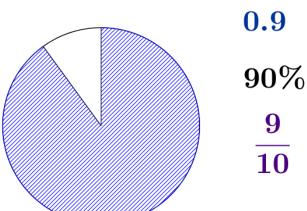
One leg of a Pythagorean triangle:

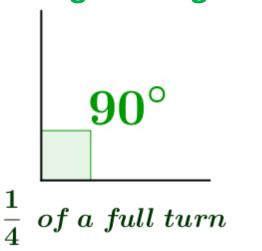


96 hours = 4 days96 days = $13\frac{5}{7}$ weeks


96 months = 8^{\prime} years

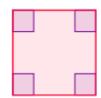
90


XC


$$9 \times 10$$

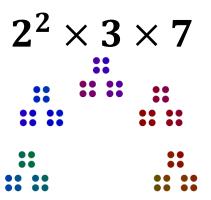
As a fraction of 100:

As an angle in degrees:

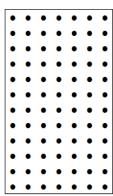


$$90^2 = 8100$$

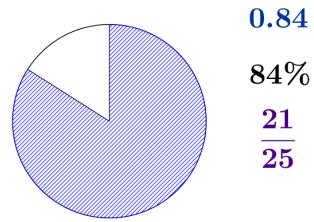
$$\sqrt{90} = 3\sqrt{10} \approx 9.487$$


Interior angle of a square:

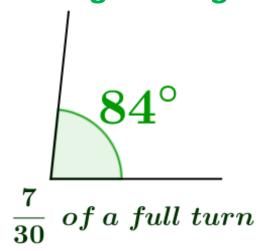
90 hours =
$$3\frac{2}{3}$$
 days
90 days = $12\frac{6}{7}$ weeks
90 months = $7\frac{1}{2}$ years


84

LXXXIV



$$1 \times 84$$
 2×42
 3×28
 4×21
 6×14
 7×12


$$7 \times 12$$

As a fraction of 100:

As an angle in degrees:

$$84^2 = 7056$$

$$84 hours = 3\frac{1}{2} days$$

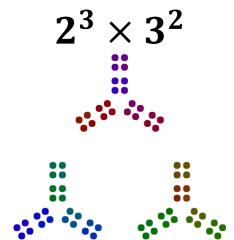
$$84 days = 12 weeks$$

$$84 months = 7 years$$

84 is the number of ways to choose 3 objects from 9

$$\sqrt{84} = 2\sqrt{21} \approx 9.165$$

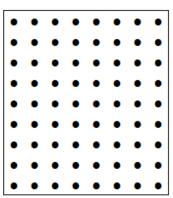
One leg of a Pythagorean triangle:

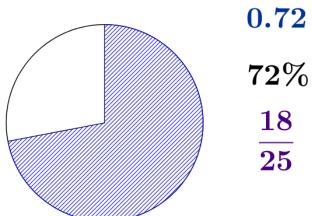

$$13^2 + 84^2 = 85^2$$

Number of the Week

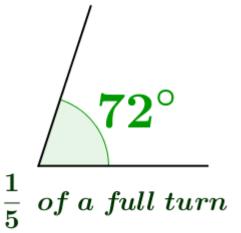
01001000

72


LXXII

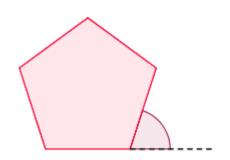

12 Factors

$$1 \times 72$$
 2×36
 3×24
 4×18
 6×12
 8×9


$$8 \times 9$$

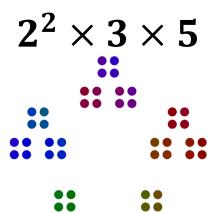
As a fraction of 100:

As an angle in degrees:

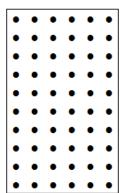


$$72^2 = 5184$$

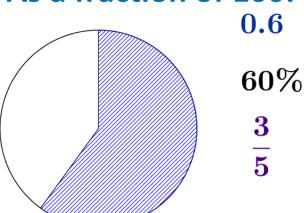
$$\sqrt{72} = 6\sqrt{2} \approx 8.485$$


Exterior angle of a regular pentagon:

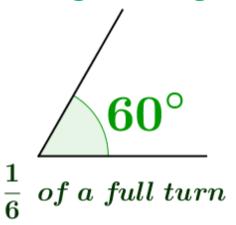
72 hours = 3 days
72 days =
$$10\frac{2}{7}$$
 weeks
72 months = 6 years


60

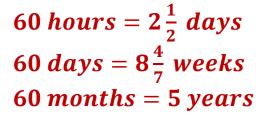
LX



12 Factors

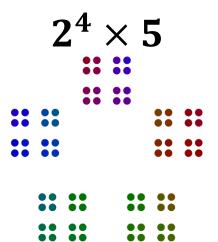

$$6 \times 10$$

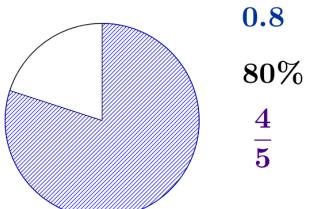
As a fraction of 100:


As an angle in degrees:

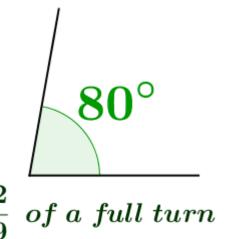
$$60^2 = 3600$$

$$\sqrt{60}=2\sqrt{15}\approx 7.746$$


Interior angle of an equilateral triangle:

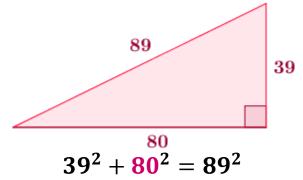

80

LXXX



$$1 \times 80$$
 2×40
 4×20
 5×16
 8×10

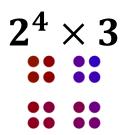
As a fraction of 100:


As an angle in degrees:

$$80^2 = 6400$$

$$\sqrt{80} = 4\sqrt{5} \approx 8.944$$

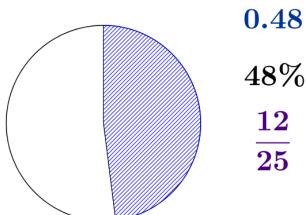
One leg of a Pythagorean triangle:


80 hours =
$$3\frac{1}{3}$$
 days
80 days = $11\frac{3}{7}$ weeks
80 months = $6\frac{2}{3}$ years

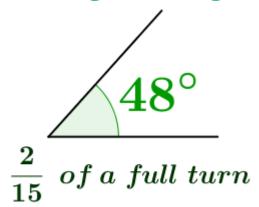
Number of the Week

00110000

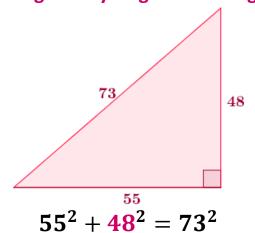
48


XLVIII

10 Factors

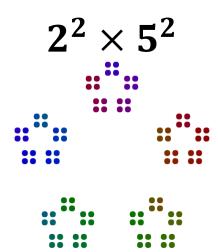

$$1 \times 48$$
 2×24
 3×16
 4×12
 6×8

As a fraction of 100:


$$48^2 = 2304$$

As an angle in degrees:

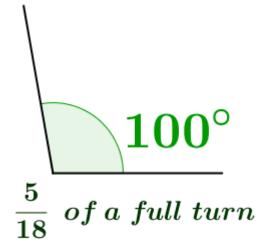
$$\sqrt{48} = 4\sqrt{3} \approx 6.928$$


One leg of a Pythagorean triangle:

48 hours = 2 days $48 days = 6\frac{6}{7} weeks$ 48 months = 4 years


100

C



$$1 \times 100$$
 2×50
 4×25
 5×20
 10×10

As a fraction of 100:

As an angle in degrees:

$$100^2 = 10000$$

$$\sqrt{100} = 10$$

 $100 hours = 4\frac{1}{6} days$ $100 days = 14\frac{2}{7} weeks$ $100 months = 8\frac{1}{3} years$

100 centimetres = 1 metre

100 pence = £1

 $100^{\circ}C$ is the boiling point of water

100km is the altitude of outer space