Money Matters

Alice and Bob have just accepted jobs at two different firms, and are comparing their choices.

Alice's job pays a starting salary of $£ 20,000$ a year, with an automatic annual pay increase of $£ 1500$.

Bob’s job pays a starting salary of $£ 35,000$ a year, with an automatic annual pay increase of $£ 1000$.

Both of them expect to remain with the same company until retirement.
Assume for the sake of simplicity that the salary is paid in full at the start of each year.

For example:

Year	Alice's Salary	Alice's Running Total	Bob's Salary	Bob's Running Total
1	$£ 20,000$	$£ 20,000$	$£ 35,000$	$£ 35,000$
2	$£ 21,500$	$£ 41,500$	$£ 36,000$	$£ 71,000$
3	$£ 23,000$	$£ 64,500$	$£ 37,000$	$£ 108,000$
\ldots	\ldots	\ldots	\ldots	\ldots

Each person's income can be modelled as an arithmetic series. By considering the first term and the common difference for each person, answer the following questions. Take care to choose whether you are finding U_{n} or S_{n} in each case.
1.
a) When will Alice’s salary first exceed $£ 40,000$?
b) When will her total earnings first exceed $£ 500,000$?
2.
a) When will Bob’s salary first exceed $£ 40,000$?
b)

When will his total earnings first exceed $£ 500,000$?
3. When will Alice's salary first exceed Bob's?
4. How long would they both have to work for Alice's total earnings to equal Bob's?

Money Matters SOLUTIONS

First, note that, for Alice: $a=20000, d=1500$ and for Bob: $a=35000, d=1000$. We will be making use of the two formulae:

$$
\begin{gathered}
n^{\text {th }} \text { term: } \quad U_{n}=a+(n-1) d \\
\text { Sum of the first } n \text { terms: } \quad S_{n}=\frac{n}{2}(2 a+(n-1) d)
\end{gathered}
$$

1.

a) When will Alice’s salary first exceed $£ 40,000$?

$$
\begin{gathered}
a=20000 \quad d=1500 \quad U_{n}=a+(n-1) d \\
40000=20000+1500(n-1) \quad \Rightarrow \frac{40000-20000}{1500}+1=14 . \dot{3} \quad \Rightarrow \quad 15 \text { years }
\end{gathered}
$$

b) When will her total earnings first exceed $£ 500,000$?

$$
\begin{aligned}
& S_{n}=\frac{n}{2}(2 a+(n-1) d) \Rightarrow 500000=\frac{n}{2}(40000+1500(n-1)) \\
& \Rightarrow 1000000=40000 n+1500 n(n-1) \Rightarrow 10000=400 n+15 n^{2}-15 n \\
& \Rightarrow 15 n^{2}+385 n-10000=0 \Rightarrow n=16 \Rightarrow 16 \text { years }
\end{aligned}
$$

2.

a) When will Bob’s salary first exceed $£ 40,000$?

$$
\begin{aligned}
& a=30000 \quad d=1000 \quad U_{n}=a+(n-1) d \\
& \Rightarrow 40000=30000+1000(n-1) \quad \Rightarrow \quad \frac{40000-30000}{1000}+1=\boldsymbol{n}=11 \text { years }
\end{aligned}
$$

b)

When will his total earnings first exceed $£ 500,000$?

$$
\begin{aligned}
& S_{n}=\frac{n}{2}(2 a+(n-1) d) \quad \Rightarrow \quad 500000=\frac{n}{2}(60000+1000(n-1)) \\
& \Rightarrow 1000000=60000 n+1000 n(n-1) \quad \Rightarrow 1000=60 n+n^{2}-n \\
& \Rightarrow n^{2}+59 n-1000=0 \Rightarrow n=13.746 \ldots \quad \Rightarrow 14 \text { years }
\end{aligned}
$$

3. When will Alice's salary first exceed Bob's?

$$
\begin{gathered}
20000+1500(n-1)=30000+1000(n-1) \\
200+15 n-15=300+10 n-10 \Rightarrow 5 n=105 \Rightarrow n=21 \Rightarrow 21 \text { years }
\end{gathered}
$$

4. How long would they both have to work for Alice's total earnings to equal Bob's?

$$
\begin{gathered}
\frac{n}{2}(60000+1000(n-1))=\frac{n}{2}(40000+1500(n-1)) \\
n(60000+1000(n-1)-40000-1500(n-1))=0 \\
600+10(n-1)=400+15(n-1) \\
200+10 n-10=15 n-15 \Longrightarrow 205=5 n \Rightarrow n=41 \Rightarrow 41 \text { years }
\end{gathered}
$$

