Gravity Bounds
The acceleration due to gravity experienced by any mass close to the surface of the earth can be calculated using the following formula:

\[g = \frac{GM}{r^2} \]

\(G \) is the gravitational constant, \(M \) is the mass of the earth and \(r \) is the radius of the earth.

The mass of the earth is 5.97 \(\times \) 10\(^{24} \) kg, to 3 significant figures.
The radius of the earth is 6371000 m, to the nearest 1000 m.
The gravitational constant, \(G \), is 6.67 \(\times \) 10\(^{-11} \) to 3 significant figures.

1. Using the values given above, calculate \(g \).

Taking the values given above, \(g \) is equal to: __________ \(ms^{-2} \)

2. By taking into account the precision of the measurements given, and considering upper and lower bounds, find the range of possible values \(g \) could take.

The greatest possible value of \(g \) is: __________ \(ms^{-2} \)

The least possible value of \(g \) is: __________ \(ms^{-2} \)

3. Using the upper and lower bounds you have now found for the value of \(g \), write down the value for \(g \), rounding to an appropriate degree of accuracy.

\(g \) is __________ \(ms^{-2} \) correct to __________ significant figures
The acceleration due to gravity experienced by any mass close to the surface of the earth can be calculated using the following formula:

\[
g = \frac{GM}{r^2}
\]

\(G\) is the gravitational constant, \(M\) is the mass of the earth and \(r\) is the radius of the earth.

The mass of the earth is \(5.97 \times 10^{24}\) kg, to 2 significant figures.
The radius of the earth is \(6371000\) m, to the nearest 1000 m.
The gravitational constant, \(G\), is \(6.67 \times 10^{-11}\) to 3 significant figures.

1. Using the values given above, calculate \(g\).

\[
g = \frac{(6.67 \times 10^{-11}) \times (5.97 \times 10^{24})}{6371000^2}
\]

Taking the values given above, \(g\) is equal to: \(9.81036023452388\) \(m/s^2\)

2. By taking into account the precision of the measurements given, and considering upper and lower bounds, find the range of possible values \(g\) could take.

\[5.965 \times 10^{24} \leq m < 5.975 \times 10^{24}\]
\[6370500 \leq r < 6371500\]
\[6.665 \times 10^{-11} \leq G < 6.675 \times 10^{-11}\]

\[
\frac{G_L m_L}{(r_U)^2} \leq g < \frac{G_U m_U}{(r_L)^2}
\]

The greatest possible value of \(g\) is: \(9.8274793416876\) \(m/s^2\)

The least possible value of \(g\) is: \(9.79325869624054\) \(m/s^2\)

3. Using the upper and lower bounds you have now found for the value of \(g\), write down the value for \(g\), rounding to an appropriate degree of accuracy.

\(9.7932\ldots \leq g < 9.8274\ldots\)

All values within this range round to 9.8 to 2 s.f., but to 3 s.f. they are no longer the same.

\(g\) is \(9.8\) \(m/s^2\) correct to 2 \textbf{significant figures}

Note: This gives an error interval of \(9.75 \leq g < 9.85\) which contains the calculated interval.