Golden Balls

Gold facts:

Gold has a density of $19.3 \mathrm{~g} / \mathrm{cm}^{3}$.
The price of gold is currently around $£ 35$ per gram.
The entire gold reserves of the world currently total around 165,000 tonnes.

Task 1

What is the value of one cubic centimetre of gold?

Task 2a
How heavy would a lump of gold worth $£ 1$ million be?

Task 2b
What would the volume of this lump of gold be?

Task 2c

If this lump of gold were made into a sphere, what would its diameter be?
Hint: The volume of a sphere is $V=\frac{4}{3} \pi r^{3}$. Remember the diameter is twice the radius.

Task 3

If the entire gold reserves of the world were melted down to form a huge sphere, what would its diameter be?

Golden Balls

Gold facts:

Gold has a density of $19.3 \mathrm{~g} / \mathrm{cm}^{3}$.
The price of gold is currently around $£ \mathbf{£ 3}$ per gram.
The entire gold reserves of the world currently total around 165,000 tonnes.

Task 1

What is the value of one cubic centimetre of gold?

$$
19.3 \times 35=£ 675.50
$$

Task 2a

How heavy would a lump of gold worth $£ 1$ million be?

$$
1000000 \div 35=\mathbf{2 8 5 7 1} \boldsymbol{g} \text { to the nearest gram (or } 28.571 \mathrm{~kg} \text {) }
$$

Task 2b

What would the volume of this lump of gold be?

$$
28571 \div 19.3=\mathbf{1 4 8 0} \mathbf{c m}^{\mathbf{3}} \text { to the nearest } \mathrm{cm}^{3}
$$

Task 2c

If this lump of gold were made into a sphere, what would its diameter be?
Hint: The volume of a sphere is $V=\frac{4}{3} \pi r^{3}$. Remember the diameter is twice the radius.

$$
\begin{gathered}
1480=\frac{4}{3} \pi r^{3} \Rightarrow 4440=4 \pi r^{3} \Rightarrow 1110=\pi r^{3} \Rightarrow 353.3 \ldots=r^{3} \\
r=\sqrt[3]{353.3 \ldots}=7.07 \mathrm{~cm} \text { to } 2 \text { d.p. Diameter }=2 \times 7.07=\mathbf{1 4 . 1 4 c m} \text { to } 2 \mathrm{~d} . \mathrm{p} .
\end{gathered}
$$

Task 3

If the entire gold reserves of the world were melted down to form a huge sphere, what would its diameter be?

$$
\begin{gathered}
165000 \text { tonnes }=165000000000 \mathrm{~g} \\
\text { Volume }=165000000000 \div 19.3=8549222798 \mathrm{~cm}^{3}=\frac{4}{3} \pi r^{3} \\
r=\sqrt[3]{\frac{3 \times 8549222798}{4 \pi}}=1268.5 \mathrm{~cm} \quad \text { Diameter }=2 \times 1268.5 \mathrm{~cm}=\mathbf{2 5 3 7} \mathbf{c m}(25.37 \mathrm{~m})
\end{gathered}
$$

