## Volume and Surface Area

An underground fuel storage unit is designed as shown:


## Task 1

Diesel costs around $£ 1200$ per cubic metre. Calculate how much it would cost to fill this storage unit completely.

## Task 2

The tank is to be constructed from sheets of stainless steel at a cost of $£ 25$ per square metre. Draw a set of scale drawings for each plate required, and calculate the total cost of the stainless steel.

## Task 3

A welder is employed to put the tank together. He charges $£ 30$ per metre for welding stainless steel seams. Calculate the total cost of welding the tank together.

## Volume and Surface Area Solutions

An underground fuel storage unit is designed as shown:


## Task 1

Diesel costs around $£ 1200$ per cubic metre. Calculate how much it would cost to fill this storage unit completely.

$$
\begin{gathered}
\text { Cross }- \text { sectional area }=13 \times 11-3 \times(3 \times 3)=143-27=116 \mathrm{~m}^{2} \\
\qquad \begin{array}{c}
\text { Volume }=\text { cross }- \text { sectional area } \times \text { depth }=116 \times 2=232 \mathrm{~m}^{3} \\
\text { At } £ 1200 \text { per m}
\end{array} \mathrm{m}^{3}: 232 \times 1200=£ \mathbf{2 7 8}, \mathbf{4 0 0}
\end{gathered}
$$

## Task 2

The tank is to be constructed from sheets of stainless steel at a cost of $£ 25$ per square metre. Draw a set of scale drawings for each plate required, and calculate the total cost of the stainless steel.

## For scale drawings see attached

$$
\begin{gathered}
116 m^{2} \times 2+6 m^{2} \times 6+10 m^{2}+14 m^{2}+16 m^{2}+20 m^{2}=328 m^{2} \\
\text { At } £ 25 \text { per } m^{2}: \quad 328 \times 25=£ \mathbf{8 2 0 0}
\end{gathered}
$$

## Task 3

A welder is employed to put the tank together. He charges $£ 30$ per metre for welding stainless steel seams. Calculate the total cost of welding the tank together.

Seams around the front face: $7+3+3+5+3+3+10+8+3+3=48 m$
Seams around the back face: (same as front) $=48 \mathrm{~m}$
Seams between front and back: $10 \times 2 m=20 \mathrm{~m}$

$$
\text { Total: } 48+48+20=116 m \quad \text { At } £ 30 \text { per metre: } \quad 116 \times 30=£ 3480
$$



