Deriving SUVAT Equations

Stated assumptions:

\[\text{average speed} = \frac{\text{distance}}{\text{time}} \]
\[\text{acceleration} = \frac{\text{change in speed}}{\text{time}} \]

Defining variables:

\[s = \text{displacement} \ (m) \]
\[u = \text{initial velocity} \ (ms^{-1}) \]
\[v = \text{final velocity} \ (ms^{-1}) \]
\[a = \text{acceleration} \ (ms^{-2}) \]
\[t = \text{time} \ (s) \]

Deriving \(v = u + at \):

Writing (2) using the variables from (3):

\[a = \frac{v - u}{t} \]

Rearranging:

\[v = u + at \]

Deriving \(s = \frac{u + v}{2}t \):

Writing (1) using the variables from (3):

\[\frac{u + v}{2} = \frac{s}{t} \]

Rearranging:

\[s = \frac{u + v}{2}t \]

Deriving \(s = ut + \frac{1}{2}at^2 \):

Substituting an expression for \(v \) from (4) into (5):

\[s = \frac{u + (u + at)}{2}t \]

Rearranging:

\[s = \frac{2u + at}{2}t \]

\[s = u + \frac{1}{2}at^2 \]

Note: \(s = vt - \frac{1}{2}at^2 \) can be derived by substituting for \(u \) instead of \(v \).

Deriving \(v^2 = u^2 + 2as \):

Substituting an expression for \(t \) from (4) into (5):

\[s = \frac{u + v}{2} \left(\frac{v - u}{a} \right) = \frac{(v + u)(v - u)}{2a} \]

\[s = \frac{v^2 - u^2}{2a} \]

\[v^2 = u^2 + 2as \]