Changing the subject

Rearrange each formula to make a different variable the subject (ie, the letter only appears once, on its own, on one side of the = sign)

$$
l=
$$

Changing the subject

Rearrange each formula to make a different variable the subject (ie, the letter only appears once, on its own, on one side of the = sign)

$$
\begin{aligned}
& m= \\
& K E=\frac{1}{2} m v^{2} \quad v= \\
& l= \\
& t= \\
& d= \\
& u= \\
& t=
\end{aligned}
$$

$m_{1}=$
$m_{2}=$

$r=$

$t=$

Changing the subject

Rearrange each formula to make a different variable the subject
(ie, the letter only appears once, on its own on one side of the = sign)

$$
m=\frac{2 K E}{v^{2}} \quad{ }^{2}=\frac{1}{2} m v^{2} \quad v=\sqrt{\frac{2 K E}{m}}
$$

$$
\begin{gathered}
l=g\left(\frac{T}{2 \pi}\right)^{2} \quad T=2 \pi \sqrt{\frac{l}{g}} \\
t=\frac{d}{v} \quad \checkmark \quad d=v t
\end{gathered}
$$

$$
\begin{gathered}
u=v-a t \curvearrowright \begin{array}{c}
v=u+a t \\
t=\frac{v-u}{a}
\end{array} \quad a=\frac{v-u}{t} \\
\end{gathered}
$$

$$
a=\sqrt{c^{2}-b^{2}}
$$

$$
m_{1}=\frac{F r^{2}}{G m_{2}}
$$

$$
\begin{gathered}
a=\frac{2}{t^{2}}(s-u t) \\
t=\frac{-u \pm \sqrt{u^{2}+2 a s}}{a}
\end{gathered}
$$

