Baby Surface Area

A baby weighs 3.87 kg at birth.
His dad weighs 77.6 kg .
Find the volume scale factor between the two.

The average surface area of an adult male is $1.9 m^{2}$. Calculate an estimate for the baby's
 surface area.

What is the surface area to weight ratio for the dad? Give an answer in m^{2} per kg .
What is the surface area to weight ratio for the baby?

What conclusions can you draw about temperature regulation in babies?

Baby Surface Area SOLUTIONS

A baby weighs 3.87 kg at birth.
His dad weighs 77.6 kg .
Find the volume scale factor between the two.

$$
\frac{77.6}{3.87}=20.05 \text { to } 2 \text { d.p. }
$$

The average surface area of an adult male is

$1.9 m^{2}$. Calculate an estimate for the baby's surface area.

$$
\begin{aligned}
V S F=20.05 \ldots & \Rightarrow \quad L S F=\sqrt[3]{20.05 \ldots}=2.71 \ldots \quad \Rightarrow \quad A S F=(2.71 \ldots)^{2}=7.38 \ldots \\
& \Rightarrow \quad \text { Baby surface area }=\frac{1.9}{7.38 \ldots}=\mathbf{0 . 2 5 7} \boldsymbol{m}^{2} \text { to 3 d.p. }
\end{aligned}
$$

What is the surface area to weight ratio for the dad? Give an answer in m^{2} per kg .

$$
\frac{1.9}{77.6}=0.024 \mathrm{~m}^{2} / \mathrm{kg}
$$

What is the surface area to weight ratio for the baby?

$$
\frac{0.257}{3.87}=\mathbf{0 . 0 6 7} \mathrm{m}^{2} / \mathbf{k g}
$$

What conclusions can you draw about temperature regulation in babies?
The surface area to weight ratio for the baby is nearly 3 times that of the dad. This suggests that babies will lose heat much more easily, so they should be wrapped up warm!

