Angles in Polygons

Angles in polygons	Any polygon with n sides	A regular polygon with n sides	
Exterior angles ('angle at centre' follows same rules)	Total $=360$	Each angle $=\frac{360}{n}$	
		Total $=180(n-2)$	Each angle $=180-\frac{360}{n}$

Can you explain why the rules above must be true?

1. Calculate the total of the interior angles in a pentagon. Show your working.
2. What is the interior angle of a regular decagon?
3. What is the angle at the centre of a regular heptagon (7-sided shape)?
4. Write down an expression for the size of the exterior angle for an n-sided shape.
5. The sum of the interior angles of a polygon is 1440°. How many sides does it have?

Angles in Polygons

Angles in polygons	Any polygon with n sides	A regular polygon with n sides	
Exterior angles ('angle at centre' follows same rules)	Total $=360$	Each angle $=\frac{360}{n}$	
		Total $=180(n-2)$	Each angle $=180-\frac{360}{n}$

Can you explain why the rules above must be true?

- Exterior angles add up to 360° because if you turn around each exterior angle you must complete a full turn, regardless of the number of sides. The greater the number of sides, the smaller each angle is likely to be.
- In a regular polygon, each angle is equal.
- A polygon with n sides can be split into $n-2$ triangles (with all triangle angles in the corners), and each triangle's angles add up to 180°.
- The best way to find each interior angle for a regular polygon is to subtract the exterior angle from 180°.

1. Calculate the total of the interior angles in a pentagon. Show your working.

$$
180(n-2)=180(5-2)=180 \times 3=540^{\circ}
$$

2. What is the interior angle of a regular decagon?

$$
\begin{gathered}
\text { Exterior: } \frac{360}{10}=36^{\circ} \\
\text { Interior: } 180-36=144^{\circ}
\end{gathered}
$$

3. What is the angle at the centre of a regular heptagon (7-sided shape)?

$$
\frac{360}{7}=51 \frac{3}{7}=51 . \dot{4} 2857 \dot{1}^{\circ}
$$

4. Write down an expression for the size of the exterior angle for an n-sided shape.

$$
\frac{360}{n}
$$

5. The sum of the interior angles of a polygon is 1440°. How many sides does it have?

$$
180(n-2)=1440 \Rightarrow n-2=\frac{1440}{180}=\frac{144}{18}=\frac{72}{9}=8 \quad \Rightarrow \quad n=10
$$

