Slicing Shapes

<table>
<thead>
<tr>
<th>Shape</th>
<th>Volume</th>
<th>Surface Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>(\frac{4}{3} \pi r^3)</td>
<td>(4 \pi r^2)</td>
</tr>
<tr>
<td>Cylinder</td>
<td>(\pi r^2 h)</td>
<td>(2 \pi r^2 + 2 \pi rh)</td>
</tr>
</tbody>
</table>

Each end is a circle of radius \(r \), and the curved face is a rectangle of length \(h \) and width \(2 \pi r \).

A sphere of radius 3m is to be cut in half to increase the overall surface area.

- Calculate the original surface area of the whole sphere:
- Calculate the additional surface area this circular cut provides:
- By what proportion has the surface area increased as a result of the cut?

A cylinder of radius 3m and height 4m is to be cut in half parallel to the ends.

- Calculate the original surface area of the whole cylinder:
- Calculate the additional surface area this circular cut provides:
- By what proportion has the surface area increased as a result of the cut?

The cylinder (of radius 3m and height 4m) is instead cut in through the diameter.

- Write down the original surface area of the whole cylinder:
- Calculate the additional surface area this rectangular cut provides:
- By what proportion has the surface area increased as a result of the cut?

By what proportion would the surface area be increased if you cut a cylinder in both these directions? What about cutting a sphere twice?
Slicing Shapes Extension

Volume: \(\frac{1}{3} \pi r^2 h \)

Surface Area: \(\pi r^2 + \pi rl \)

(the base is a circle of radius \(r \), and the curved face is a sector of radius \(l \) and arc length \(2\pi r \)).

A cone of radius 3\(m \) and height 12\(m \) is to be cut vertically through the diameter.

Find the slant height and hence the original surface area of the whole cone:

Calculate the additional surface area this triangular cut provides.

By what proportion has the overall surface area increased as a result of the cut?

A cone of radius 3\(m \) and height 12\(m \) is to be cut horizontally, parallel to the base, a distance of \(12\sqrt{2} \)\(m \) from the top.

Write down the original surface area of the whole cone:

Calculate the additional surface area this circular cut provides:

Calculate the surface area of the frustum (truncated cone):

By what proportion has the overall surface area increased as a result of the cut?

By what proportion would the surface area be increased if you cut a cone in both these directions?
A sphere of radius 3m is to be cut in half to increase the overall surface area.

Calculate the original surface area of the whole sphere:

$$SA = 4\pi (3)^2 = 36\pi \text{m}^2$$

Calculate the additional surface area this circular cut provides:

Increased by two circles of radius 3, so: $2\pi (3)^2 = 18\pi \text{m}^2$

By what proportion has the surface area increased as a result of the cut?

$$\frac{54\pi}{36\pi} = \frac{3}{2} \text{ or } 50\% \text{ increase}$$

A cylinder of radius 3m and height 4m is to be cut in half parallel to the ends.

Calculate the original surface area of the whole cylinder:

$$SA = 2\pi (3)^2 + 2\pi (3)(4) = 42\pi \text{m}^2$$

Calculate the additional surface area this circular cut provides:

Increased by two circles of radius 3, so: $2\pi (3)^2 = 18\pi \text{m}^2$

By what proportion has the surface area increased as a result of the cut?

$$\frac{60\pi}{42\pi} = \frac{10}{7} \text{ or } \approx 43\% \text{ increase}$$

The cylinder (of radius 3m and height 4m) is instead cut in through the diameter.

Write down the original surface area of the whole cylinder:

$$SA = 2\pi (3)^2 + 2\pi (3)(4) = 42\pi \text{m}^2$$

Calculate the additional surface area this rectangular cut provides:

Increased by two rectangles of width 6 and length 4, so:

$$2 \times 6 \times 4 = 48 \text{ m}^2$$

By what proportion has the surface area increased as a result of the cut?

$$\frac{42\pi + 48}{42\pi} = \frac{7\pi + 8}{7\pi} \text{ or } \approx 36\% \text{ increase}$$

Note: if you cut the cylinder in both directions as described, the S.A. increases by S.F. $\frac{10\pi + 8}{7\pi}$ or $\approx 79\% \text{ increase}$

If you cut a sphere in half twice, because you are adding four circles, you double the surface area (100% increase)
A cone of radius 3\(m\) and height 12\(m\) is to be cut vertically through the diameter.

Find the slant height and hence the original surface area of the whole cone:
\[l = \sqrt{3^2 + 12^2} = 3\sqrt{17} \]
so:
\[SA = \pi (3)^2 + \pi (3)(3\sqrt{17}) = 9\pi (1 + \sqrt{17}) \ m^2 \]

Calculate the additional surface area this triangular cut provides.
Base is 2\(\times\)3 and height is 12. Two triangles give an area of 72\(m^2\)

By what proportion has the overall surface area increased as a result of the cut?
\[\frac{9\pi (1 + \sqrt{17}) + 72}{9\pi (1 + \sqrt{17})} \quad \text{or} \quad \approx 50\% \text{ increase} \]

A cone of radius 3\(m\) and height 12\(m\) is to be cut horizontally, parallel to the base, so as to leave a similar cone of half the volume as the top piece.

Write down the original surface area of the whole cone:
\[9\pi (1 + \sqrt{17}) \ m^2 \]

Calculate the additional surface area this circular cut provides:
Given a volume scale factor of 2 from the smaller cone to the larger, the length scale factor must be 2\(^{\frac{1}{3}}\) (or the cube root of 2), so the radius is \(3\sqrt{2}\), and the two circles we are adding have combined area:
\[2 \times \pi \left(3 \times 2^{\frac{1}{3}} \right)^2 = 9\pi \times 2^3 \]

By what proportion has the overall surface area increased as a result of the cut?
\[\frac{9\pi (1 + \sqrt{17}) + 9\pi \times 2^3}{9\pi (1 + \sqrt{17})} \quad \text{or} \quad \approx 62\% \text{ increase} \]

Note: if you cut the cone in half in both directions as described, the surface area increases by scale factor:
\[\frac{9\pi (1 + \sqrt{17}) + 9\pi \times 2^3 + 72}{9\pi (1 + \sqrt{17})} \quad \text{or} \quad \approx 112\% \text{ increase (more than double)} \]

Direct comparison

<table>
<thead>
<tr>
<th>Shape</th>
<th>(r = 3m)</th>
<th>(r = 3m) (h = 4m)</th>
<th>(r = 3m) (h = 12m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>(36\pi \approx 113m^3)</td>
<td>(36\pi \approx 113m^3)</td>
<td>(36\pi \approx 113m^3)</td>
</tr>
<tr>
<td>Surface Area</td>
<td>(36\pi \approx 113m^2)</td>
<td>(42\pi \approx 132m^2)</td>
<td>(9\pi (1 + \sqrt{17}) \approx 145m^2)</td>
</tr>
<tr>
<td>% increase in S.A after two cuts</td>
<td>100%</td>
<td>79%</td>
<td>112%</td>
</tr>
<tr>
<td>New S.A.</td>
<td>(72\pi \approx 226m^2)</td>
<td>(60\pi + 48 \approx 236m^2)</td>
<td>(9\pi (1 + \sqrt{17}) + 9\pi \times 2^3 + 72 \approx 307m^2)</td>
</tr>
</tbody>
</table>