Surface Area of a Cone

The surface area of a cone is given by:

\[SA = \pi r^2 + \pi rl \]

Where \(r \) is the radius of the base, and \(l \) is the slant height. \(l \) is linked to \(h \) and \(r \) by Pythagoras.

By considering the net of a cone, prove that the area of the curved face is \(\pi rl \):

- The small circle is the base of the cone.
- The large sector curls around so the arc exactly matches the circumference of the base circle.
- The dotted lines represent the slant height, since the point where they meet is the apex of the cone.

Note: If you know the perpendicular height \(h \) rather than the slant height \(l \), you can use Pythagoras to find \(l \) first: \(r^2 + h^2 = l^2 \).

<table>
<thead>
<tr>
<th>Radius of the sector:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference of a full circle with this radius:</td>
</tr>
<tr>
<td>Area of a full circle with this radius:</td>
</tr>
</tbody>
</table>

To match up with the base circumference, the arc length of the sector must be equal to:

The proportion of a full circle taken up by the sector must therefore be:

The area of the sector is therefore equal to:

\((this \ expression \ gives \ the \ area \ of \ the \ curved \ surface \ of \ the \ cone) \)
Surface Area of a Cone SOLUTIONS

The surface area of a cone is given by:

\[SA = \pi r^2 + \pi rl \]

Where \(r \) is the radius of the base, and \(l \) is the slant height. \(l \) is linked to \(h \) and \(r \) by Pythagoras.

By considering the net of a cone, prove that the area of the curved face is \(\pi rl \):

- The small circle is the base of the cone.
- The large sector curls around so the arc exactly matches the circumference of the base circle.
- The dotted lines represent the slant height, since the point where they meet is the apex of the cone.

Note: If you know the perpendicular height \(h \) rather than the slant height \(l \), you can use Pythagoras to find \(l \) first: \(r^2 + h^2 = l^2 \).

<table>
<thead>
<tr>
<th>Radius of the sector:</th>
<th>(l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference of a full circle with this radius:</td>
<td>(2\pi l)</td>
</tr>
<tr>
<td>Area of a full circle with this radius:</td>
<td>(\pi l^2)</td>
</tr>
</tbody>
</table>

To match up with the base circumference, the arc length of the sector must be equal to: \(2\pi r \)

The proportion of a full circle taken up by the sector must therefore be:

\[\frac{2\pi r}{2\pi l} = \frac{r}{l} \]

The area of the sector is therefore equal to:

\[\frac{r}{l} \times \pi l^2 = \pi rl \]

Combining this with the area of the base (\(\pi r^2 \)) gives the overall surface area: \(\pi r^2 + \pi rl \).