Circle Theorems

Circle Facts:

1. Any triangle with two points on the edge of a circle and one in the middle will be isosceles.
2. The tangent to a circle is perpendicular to the radius at the point of contact.
3. The triangle produced by two tangents to a circle and the chord between them is isosceles.
4. If a radius bisects a chord, it does so at right angles, and if it cuts it at right angles it bisects it.

Circle Theorems:

1. Double Angle: The angle made at the centre of a circle is twice the angle made at the edge.
2. Semicircle: The angle in a semicircle is a right angle.
3. Segment Angles: Angles in the same segment are equal.
4. Cyclic Quadrilateral: Opposite angles of a cyclic quadrilateral add up to 180°.
5. Alternate segment: The angle between a chord and the tangent at the point of contact is equal to the angle in the alternate segment.
Circle Theorems Questions

1.

In the diagram, A, B, C and D are points on the circumference of a circle, centre O.
Angle BAD = 70°.
Angle BOD = \(x\)°.
Angle BCD = \(y\)°.

(a) (i) Work out the value of \(x\).

\[x = \text{.................................} \]

(ii) Give a reason for your answer.

...
..

(b) (i) Work out the value of \(y\).

\[y = \text{.................................} \]

(ii) Give a reason for your answer.

...
..

(Total 4 marks)
2.

Diagram NOT accurately drawn

A, B and C are points on the circumference of a circle, centre O.
AC is a diameter of the circle.

(a) (i) Write down the size of angle ABC.

..........................°

(ii) Give a reason for your answer.
...
...

(b) (i) Work out the size of angle DEF.

..........................°

(ii) Give a reason for your answer.
...
...

Diagram NOT accurately drawn

D, E and F are points on the circumference of a circle, centre O.
Angle DOF = 130°.

(Total 4 marks)
The diagram shows a circle centre O. A, B and C are points on the circumference.

DCO is a straight line.
DA is a tangent to the circle.

Angle $ADO = 36^\circ$

(a) Work out the size of angle AOD.

(b) (i) Work out the size of angle ABC.

(ii) Give a reason for your answer.

(Total 5 marks)
4.

Diagram NOT accurately drawn

R and S are two points on a circle, centre O.
TS is a tangent to the circle.
Angle $RST = x$.

Prove that angle $ROS = 2x$.
You must give reasons for each stage of your working.
B and C are points on a circle, centre O.
AB and AC are tangents to the circle.
Angle $BOC = 130^\circ$.

Work out the size of angle BAO.

Diagram NOT accurately drawn

...............°

(Total 3 marks)
B and C are two points on a circle, centre O.

Angle $OBC = 15^\circ$.

AB and AC are tangents to the circle.

(a) Calculate the size of the angle marked x°.

(b) Give reasons for your answer.

\[
\begin{align*}
\text{Diagram NOT accurately drawn}\end{align*}
\]

\[x^\circ\] (2)

(Total 4 marks)
A and B are points on a circle, centre O, radius 3 cm.

PA and PB are tangents to the circle.

PA = 5 cm.

(a) Write down the size of the angle OBP.

..................°

(b) (i) Write down the length of PB.

................. cm

(ii) Give a reason for your answer.

..
..

(Total 3 marks)
8. The diagram shows a circle, centre O.
A, S, B and T are points on the circumference of the circle.

PT and PS are tangents to the circle.
AB is parallel to TP.

Angle $SPT = 44^\circ$.

Work out the size of angle SOB.

..............................°

(Total 4 marks)
A and B are points on the circumference of a circle, centre O.
PA and PB are tangents to the circle.
Angle APB is 86°.

Work out the size of the angle marked x.

Diagram NOT accurately drawn

\[
\begin{align*}
\text{Angle } APB &= 86^\circ \\
\text{Work out the size of the angle marked } x.
\end{align*}
\]
In the diagram, A, B and C are points on the circumference of a circle, centre O.

Angle $ABC = 85^\circ$.

(i) Work out the size of the angle marked x°.

..

..

..\degree

(ii) Give a reason for your answer.

..
..
..
..
..

(Total 2 marks)
<table>
<thead>
<tr>
<th>Question</th>
<th>Circle Theorem Hints</th>
<th>Circle Theorem Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
<td>You will need circle theorems 1 and 4.</td>
<td>$x = 140^\circ$ because the angle made at the centre of a circle is twice the angle made at the edge. $y = 110^\circ$ because opposite angles of a cyclic quadrilateral add up to 180°.</td>
</tr>
<tr>
<td>Question 2</td>
<td>You will need circle theorems 2 and 1.</td>
<td>$ABC = 90^\circ$ because the angle in a semicircle is a right angle. $DEF = 65^\circ$ because the angle made at the centre of a circle is twice the angle made at the edge.</td>
</tr>
<tr>
<td>Question 3</td>
<td>You will need circle fact 2 and circle theorem 1.</td>
<td>$AOD = 54^\circ$ because $DAO = 90^\circ$. $ABC = 27^\circ$ because the angle made at the centre of a circle is twice the angle made at the edge.</td>
</tr>
<tr>
<td>Question 4</td>
<td>You will need circle facts 2 and 1.</td>
<td>$TSO = 90^\circ$ because the tangent to a circle is perpendicular to the radius at the point of contact. Therefore angle $OSR = 90 - x$. Triangle SOR is isosceles since SO and OR are both the radius of the circle, therefore $ORS = 90 - x$ and $ROS = 180 - (180 - 2x) = 2x$.</td>
</tr>
<tr>
<td>Question 5</td>
<td>You will need circle facts 2 and 3.</td>
<td>Angle $ABO = 90^\circ$ because AB is a tangent and BO is a radius. Similarly, $ACO = 90^\circ$. The angles in the quadrilateral $ABOC$ must add up to 180°, so since $BOC = 130^\circ$, $BAC = 50^\circ$. Triangle ABC is isosceles, and triangle BOC is isosceles. Since they are both symmetrical about AO, the line AO bisects the angle BAO. Therefore $BAO = 25^\circ$.</td>
</tr>
<tr>
<td>Question 6</td>
<td>You will need circle facts 2 and 3.</td>
<td>Triangle BOC is isosceles since BO and CO are both the radius of the circle. Therefore $OCB = 15^\circ$ and $BOC = 180 - 2(15) = 150^\circ$. Since $ABO = 90^\circ$ and $ACO = 90^\circ$ (as AB and AC are tangents and BO and CO radii), the fourth angle in the quadrilateral $ABOC$ - the angle x - must add to 150°, 90° and 90° to make 360°, therefore $x = 30^\circ$.</td>
</tr>
<tr>
<td>Question 7</td>
<td>You will need circle facts 2 and 3</td>
<td>$OBP = 90^\circ$ because PB is a tangent to the circle at B, and BO is a radius. $PB = 5cm$ because triangle PBA is isosceles, therefore $PB = PA$.</td>
</tr>
<tr>
<td>Question 8</td>
<td>You will need circle fact 2.</td>
<td>Angle $PTO = 90^\circ$, angle $PSO = 90^\circ$ and angle $TPS = 44^\circ$. The fourth angle in the quadrilateral $TPSO$ must therefore be $TOS = 136^\circ$. Angle $TOB = 90^\circ$ because line BA is parallel to line PT and interior angles on parallel lines add up to 180°. Therefore $SOB = 136 - 90 = 46^\circ$.</td>
</tr>
<tr>
<td>Question 9</td>
<td>You will need circle facts 2 and 3.</td>
<td>Since OAP and OBP are 90° (AP and BP are tangents to the circle, and OA and OB are radii), $AOB = 180 - 86 = 94^\circ$. Triangle AOB is isosceles, so $x = \frac{180 - 94}{2} = 43^\circ$.</td>
</tr>
<tr>
<td>Question 10</td>
<td>You will need circle theorem 1.</td>
<td>$x = 170^\circ$ because the angle made at the centre of a circle is twice the angle made at the edge.</td>
</tr>
</tbody>
</table>